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GENERAL REIATIVITY

Lecture Notes

H.Y. CHIU

(Notes by the Class)

The Differences between General Relativity

and Electrodynamics

Static Cavendish
. mM
Classical force = =
R
£~ 1/R"
m=2+10°
Dynamic It is not known
Classical if gravitational waves
exist.

DATA - The theory pre-
dicts the bending of light
rays around the ‘sun and the
motion of the perihelion of
a planet - both have been
observed.

Quantization needed ?
existence?
Second ?

Quantization

Coulomb 5 o
force = e /R
f ~ l/Rm

m= 2 + 10-6

Maxwell's equations
predict the existence of
electromagnetic waves,
and their existence is
verified by many experiments

Hydrogen spectra - well
developed and verified,

Lamb shift - well developed
and verified.



The coupling constant for electromagnetic interactions
is R = ez/ﬁc = 1/137 . We can obtain the gravitational~
coupling constant by replacing e2 by the gravitational charge
Gmp2 and <jG = Gmp2/<ﬁc = 10—39 . For two gravitationally
bound neutrons the first Bohr orbit will be 2x1018 cm  or two
light years. Thus, in order to perform gravitational experiments,
one must use objects of astronomical size.

An example of a space experiment that might show some
relativistic effects is an artificial planet surrounded by some
gas shield to eliminate gas drag and light pressure difficulties
that would interfere with the gravitational orbit. We surround

a small artificial planet with a hollow spherical shell equipped

with gas jets as shdwn.

ARTIEIC AL «——0OAs TeTs
PLANET

SENSING
AEVICES

‘When the artificial planet gets near the wall, the gas jets are
turned on by the sensing devices to compensate the drag to kéep
the shell from touching the inner sphere. 1In this way the -
artificial planet moves on a proper planetary orbit. A radar

technique could be used to determine the distance to this device



with great precision making possible a test of the form of the
force law to the accuracy required for relativistic effects to
appear. An alternative and simpler technique would be to set
two or three vehicles, externally identical but of different
density, on substantially the same initial orbit. Then the
effect of gas drag and light pressure on their orbits could be
inferred from their different motions.

To verify general relativity we need non-local experiments

because the space is locally Euclidean.

Structure of Generasl Relativity and Electrodynamics

General Relativity Electrodynamics
Space Determined by the theory Given element
and the mass-energy distri-
. 2 2
bution. ds = c dt2 —(dx2+ dy2+ dz%
Equations Determined by the theory Given element
of Motion - (non-linear theory) (not from Maxwell's
equations)
2
d
W\——? =g B (1inear) |
2 |
dt

When are the relativistic effects important?

Quantum effects become important when
pr ~H .

Relativistic effects become important when the kinetic energy

is about equal to m c2



omsem——— = kinetic energy ~ m c

or

Principles of Eqliivalence -

(1) The weak principle of equivalence states that the
trajectory of a particle, under the influence of gravitational
fields only, depends only in its initial position and velocity,
but not on its mass or its'nature. If, for example, we consider

a simple pendulum with the equation of motion

LA

where m; is the property of mass in response to acceleration
and my 1s the property of mass in response to gravitation;

the weak principle of equivalence states that
m;/mtgil.

Experiments which have measured this ratio give the following

results
m; / mq
Newton 1 i—l_lo_3
Bessel 1+ 10.-4
Ebtv8s 1+ 1078
Dicke 1 + sx10”12



2) The strong principle of equivalence states that "the laws
of physics must be of such a nature that they apply to systems
of reference in any kind of motion." Thus at every point in
space-time there exists an inertial frame of reference in which
all the physical laws are the same as they would be in the
absence of gravitation (one can transform away the effects of
gravity by allowing the laboratory to fall freely). We also
have that the dimensionless constants appearing in the physical

laws must be the same throughout the universe.

If the coupling constants were position dependent the
binding energy of a body would be position dependent. In this
case, a body in a gravitational field would also experience a
force depending on position and structure. The results of the
EdtvSs experiment are accurate enough to make it unlikely that
the strong and electromagnetic coupling constants are position
dependent, but nothing can be said about the gravitational and

weak interaction coupling constants.



Principle of Covariance

The general laws of nature are to be expressed by equations

which hold good for all systems of coordinates, that is, are co-

variant with respect to any substitution whatever (generally

covariant) .

This requirement of general covariance exceeds the principle
of general relativity which makes reference only to inertial
systems. The principle of covariance suggests that the laws of
physics have the same form relative to any (not necessarily
freely falling) observer.

The principle of covariance thus implies a relativity of
gravitational forces.

However, let us consider some distance ds measured in a

two dimensional space

as? = ax? + c:ly2 or as? = r? (a® 2 4 sin’® a$ 2)

There exists no transformation from cartesian coordinates
to polar coordinates which also preserves the distance ds.
An example of this is the difficulty of representing the earth's
surface on a flat map.

Without a principle of covariance it would be impossible

to interpret the results of observationsip -these Two Spaced



Curvature of Space-Time

What do we mean by curvature of "empty" space? The very
concept of curved, empty space seems impossible to visualize.

Let us look at a somewhat simpler, although analogous,
situation. Suppose we are given a table of distances between
cities. Can we determine if these cities lie on a curved surface
or a flat plane?

As an example let us consider some airports and the flight

distances between these various airports.

AZORES BERLIN BOMBAY BUENOS AIRES
Azores —_— 2148 5930 5385
Berlin 2148 — 3947 7411
Bombay 5930 3947 — 9380
Buenos 5385 7411 9380 —
Aires

Using a ruler and compass these points can easily be
plotted. Choose a point as representing the Azores. Then
scribe a radius scaled to the distance from the Azores to Beriin.
Choose any point on this arc as Berlin. The choice of these two
airports now completely determines all others in the table since

the only variables to be chosen are absolute location and orientation.



Scribe arcs from the Azores and Berlin representing the
distance to Bombay. The intersection of these arcs determines
Bombay. Now from these three airports scribe distances to
Buenos Aires, Tf the surface of the Earth were flat, all these
arcs would meet at a point - Buenos Aires. However, we find
that they do not meet.

The first conclusion is that the surface of the Earth (the
space in question) is not flat. It seems quite reasonable that
a sphere of §émg radius will be able to fit the distances. For
only four points one can always find an appropriate sphere.
However, for five or more points a sphere may not be general
enough.

The point of this exercise is that the distances between

points characterize the space.

1) Geometrical properties of a "space"‘ are characterized

by the distances between all points in space.

This is a rather exhaustive specification. Is there not
some more tractéble method of defining a space?

In the previous example'it is oﬁviously not necessary to
know the distance from New York to San Francisco if one knows
the distances from New York to Chicago,‘and from Chicago to
San Francisco and if one knows the airline route from New York

to San Francisco passes through Chicago. Thus it isn't neceséary



to have so extensive a Table. It is enough to know the distance
between every point and all the neighboring points.

The distance from any point to a nearby point depends bi-
linearly upon the coordinate differences between the two points -

(dS)2 = ng dx“ de

?

metric coefficients - contains all

information about the space.

What criteria must we satisfy in order to be sure our space

is flat? Take a Taylor expansion of qu -

}gNQ ¥
Jeg T g*q((xc}) M et

The second term can be neglected if -

dg <
1 nd Ax « 1

9u© szx

1

that is, it is always possible to choose a Ax such that we
have a Euclidean Space. Although Special Relativity is not a
Euclidean system one can always find a local neighborhood of

points within which Special Relativity is valid.
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Equations of Motion
Coslnie toafbicionts )
Suppose we are given the metric tensor, This should

completely determine the equations of motion. We shall determine

the equations of a path between two points such that
jds is stationary .

Keeping the beginning and end of the path fixed, we give every

intermediate point some arbitrary displacement &x

2

ds = gp.v de dx ,
(1) 2ds §(ds) = bdxp dax Sg’w + g}w dx" S(dx ) + gpw S(dxj,
g \’ )
= dx)‘ dxv Yo Sx, + g}* dx d(sx ) + g}w ax, d(6x,)-

The stationary condition is

IS(dS) = 0

Substituting (1)

a8
T = T t 9, TmR) o, T e fde = 0

Changing dummy indices in the last two terms -

dxy, dx, 'agm, S dx,\ d '
= = g &% (pc as. © Yev 'c'i?) Es'(gxc')} ds =0
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Integrate by parts (note 6Xc- = 0 on boundaries)
2| @ ds Ox, ds 'Juc ds g@vds B

For arbitrary ch‘ the coefficient in the integral must vanish
at all points along the path.
Therefore

1 O dxy gy
2 ds ds xR

But
A9 pe ‘bgﬂﬂ dx, d9qy 94, dx ),
—— Y et SR = Gy I
ds bxv ds ds bxp ds

Now in the last two terms replace the dummy suffixes M and vy

by €. Then

] 2
< 3 '—ds R Bxe o Tox 9 T3 = O
2 s G v M ds
oK
Multiply through by g
dx,, dx [e) ) d2x
i g S L _gL il
.5 s S g oOx Ux “ 2 = 0
v M ds

A i The dwvense o 956 cudtd 97%9, L ¢

14

ds” ds 2 ds ds 2 pe 27 0o
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From the definition of the Christoffel symbol -
o< X o9 g
1 ¢ 22y
\V) = e g Q H 4 —a - J
M 2 X, CER d%g

dzx ol] 4dx dx
ﬁ”-‘- o o = ()
ds )*\)

ds ds

For o« =1,2,3,4 this gives the equations of motion.

Notation:

2
ds = c2 dtz - dx2 - dy2 - dz2

(Greek sub or superscripts) 0,1,2,3

(Roman sub or superscripts) 1,2,3

. . 1 2 3 . .
xo - time coordinate X ,Xx ,x =~ spatial coordinates

signature - refers to locally flat coordinates ds2 = (+ ~-~-)

natural coordinates - refers to the vicinity of a point;
coordinates which move with constant velocity
with respect to the point are said to be natural

coordinates.

proper coordinates - Near a point the_gravitational field
can be transformed away by introducing a freely

falling coordinate system with respect to the
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gravitational field. Out of the family of co-
ordinate systems which are freely falling, the

one which is temporarily at rest with the point
under consideration is called the proper coordinate
system. BAll the other coordinate systems are

called natural coordinate systems.

A freely falling, non rotating observer will not see a
gravitational field in his immediate vicinity. That is, in a
finite four dimensional space time region V (including the
observer and his laboratory) there is a limit of experimental
accuracy such that no true gravitatiénal.field can be detected
within V as long as this accuracy is not exceeded.

Let grad,db be a measure of the Riemann curvature within VvV
and let Q be a typical dimension of VvV . Then if grad<bG° jg«<l

c
is too small to be measured, the volume enclosed within V is
flat within experimental accuracy.

There is another method of obtaining this result. The
curvature (grad ¢h) gives the acceleration at any point. If we
assume a uniform curvature (uniform acceleration) we can

determine the total acceleration a "particle" receives as it

traverses the laboratory

residual acceleration = grad (bG-. Q
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The time of transit of light across the lab is Sz/ c.
From the familiar formula for final velocity under uniform

acceleration -

final velocity = grad (bG - Q %} .

This final velocity must be much less than the velocity of light.
g‘qrauihb-S\« c = grad &f << 1 .
c G G c2

As an example consider a "laboratory" whose dimensions are

those of an elementary particle.

Q - 10_l3 cm = 9/ c w lO23 seconds
\$ grad ¢h-<<<lo46 cm/secz/cm
Then
2
grad P, 2. e 10 10746 3

2
c

and we conclude that the restriction is good for elementary
particles. Let us determine how much mass of an elementary

particle must have to violate the restriction.

% - ||
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Consider two elementary particles that are touching. This

will present the strongest possible field.

= *
(r + ) - -
? i% b \()\2UWL
if qxskz lO46 the restriction is not wvalid
-7
R 10

M lO27 g / particle

If the mass is this large, the restriction doesn't hold.
"-—Mfwa c‘]vavi*afioua‘ QFfGC‘S caw be ehﬂreiy 'ueskc‘zri {Aew
todicle tLLD\‘y .
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14.3 Riemannian Geometry.

It is impossible in this section to exhaust all features
of Riemannian Geometry which might be relevant to general
relativity problems, hence we shall concentrate on certain
basic features of Riemannian Geometry or those of wide applications
to relativity problems of interest. The problem of relating properties
of Riemannian Geometry to Physical problems will be discussed

in Sect. (14.4) and (14.9).

(i) Generalized Coordinate Systems. In a space of n dimensions
the position of a point P is characterized by -a set of n numbers
i .
{.x g . In a rectangular orthodognal coordinate system for an
*

Euclidean space, it is always possible to find a set of constant

vectors *31 such that

*In what follows we shall use Euclidean and Minkowskian. In the
ordinary usage a space is said to Euclidean if the line element ds
has the following form:

ds” = dr7<o'v d’%v =0
and all coordinates are real. In the Minkowskian space we have

as? = = (d+ dy+da®) « Sdt* 2o
We shall use, for our discussion, the following definition for
an Eucleidean space: A space is Eucleidean if a coordinate system

exists such that

(continued on p. 17)
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the position of the point P is given by XCCIQ . This is not true
in general,even in Euclidean space. For example, in a spherical
polar coordinate system, no such a set of constant vector -gi
exists. In general we must regard a point in space.of n-dimensions
as characterized by a set of numbers{xif , which serves as a
representation only: to each point P there corresponds one and
only one set {}J} . There cannot be more than a finite number
of points for which P can be represented by more than one set of
{)J} . (Example: the point of origin (0,0,0) in a Cartesian
coordinate system is (O,QU(P) in a polar coordinate system where
© ang (Q are arbitrary). The points P are therefore the
important constituents of the structure of the space, and the
coordinates only serve as a representation. They have no
significance whatsoever to the interrelation among the poiﬁts.

The collection of all points of a space is often called a

manifold.

(continued from p. 16)
D A
(Els2 = é(DSd&) dxo
where é(})) =¥l .| A minkowskian space will be taken to be one
. )

such that é(ﬂ)) = -1, P

1,2,3, and é{V)= +1,  Y=4. The
set of €&(¥) is the signature of the metric, and it can be

shown to be invariant under coordinate transformations.
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We shall assume the following property for the manifold:
(i) It has topological properties. That is, the concept of
"being nearer to one point than the other" is applicable. This
property enables us to specify the neighborhood to a point.

(ii) It is possible to establish a one-to-one correspondence
relationship between the points in the neighborhood to points of
an Euclidean space such that the concept of "being nearer to one
point than the other" is the same. This property means that

the space is locally Euclidean.

(iii) The one-to-one correspondencg relationship is continuous
in both spaces.

(iv) The space is simply connected. That is, the area of any
closed curve canbe made to become zero by letting the length of
the curve approach zero.

These properties are part of properties of an Euclidéan space.
Returning now to a four dimensional space; assume that the points
of space are represented by a coordinate system.ik?}. Let there be
a second coordinate system {X’ } . Because of the one to one

( "w "w
correspondence between a point and iX} and S’X } the X '5

!
can be expressed as functions of Xv.S:

) . K
X vV . Xv( i)(}y (14.12)
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Similarly, we also have the inverse transformation:

XM" )('.L< {,x,v}.> (14.13)

Because of our requirement that coordinate systems are only rep-

resentations of the points of a space, it is essential that

inverse transformations exist for any coordinate transformation.
Consider the neighborhood to a point P There exists a one to

correspondence between points in thisneighborhood to points of a

Euclidean space. We can define the distance between two points

P and P' to be that between the corresponding points in the

*
Euclidean space. That is, we have

v v o o /@
ds* - é(v);l)(gdxf =e(™) 2% ax"ﬁdx d)f:ﬂo(/gdx dx

by (14.14)
9., e(v) 2% 2%
o'y XX >xf

where {Xi)g is the coordinate system for the corresponding
Euclidean space. The coefficient A?“95 is the metric tensor.
In general ﬁo(,ﬁ are functions of{xxf and gx“} only.

The metric tensor relates the distance between two neighboring

points to the corresponding distances measured by the coordinates.
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. 2 . . . . .
Since ds describes an invariant relationship between P
~ [
and P', in a different coordinate system {X v} Eg. (14.14)

becomes:

Y.
dszzé(_V)dﬂfé)s’)v=.€Cv)?x0 3% ax' ‘dx'

o2 x4

(14.15)

n

/ 1 ¥ A
9 dx dx
i
The two expressions (14.14) and (14.15) are exactly equivalent.

Using the relation

3)(14 (14.16)

y «
we find that the coordinate transformation i)( }'-% {K }

necessitates the following transformation law for ga( :
J t
9 =  ax® ax”?
k- jo(/& ax* IxV (14.17)

Class of quantities which transform like (14.16) and (14.17) are

known as tensors, which play a vital role in Riemannian Geometry.

(ii) Tensors.

(a) Definition and Algebra.

We define a contravariant tensor of rank n (in a four dimensional

manifold as an entity with n4 components denoted by n superscripted
‘indices; the magnitude of the various components are genemally

functions of the coordinates used,but the various components of the



21

tensor transform according to the following law:

) R
) = 1 o
!
PO o _T..,,d/gf--»- ax'P 2% ax _
T = S exq 3 X2 SX\‘{
This is a generalization of Eg. (14.16) which is the law of trans-

formation for an infinitesimal vector at a given point. A contra-

variant vector of rank 0 is a scalar whose magnitude is a function

of the points of the manifold but is independent of the coordinates

used.

We define a covariant tensor of rank n analogous to a contra-

variant tensor, by the following properties:

¥
T T o oxP ax .
fo—g "'0{,675" 3\('.)0 _IN T BX'S (14.19)

Hence, if a tensor has zero components in one coordinate system it
has zero components in all coordinate systems. We use subscripts
to distinguish a covariant tensor from a contravariant tensor. It

is seen that the metric tensor g is a covariant tensor of the

nw,

second rank.

A mixed tensor has both superscripted and subscripted indices,

the transformation law is a mixture of Eq. (14.18) and (14.19):

T\.,,.Jao's N _T We"'“___ :xfax 9__'5 axﬁaxq 2%

Sy LI I A Sy e

(42



22

The law of addition of tensors applies only to tensors of the
same rank and type (Contravariant or Covariant), and at the

same point of the manifold. The rule is

.o rees S—-._ .":fo-S-..-
g TNk = (T+U)

—r---o(/a‘(.... v \)"’U‘AF’" ( "'d/éf"'"

(14.21)

pES

It is easily shown that QT*\j\"vyef" transforms like a tensor.
The law of multiplication of tensors applies to any two tensors

at the same point of the manifold. The resulting tensor has a

rank equal to the sum of that of the two tensors. We have:

L eaS PVE-
---ﬁp*‘,... . ...e.qx.... -o(,lf’ 'I (14.22)
TS PVE
It is easily shown that CT\)) transforms like a

A B O
tensor. The simplest example of Eg. (14.22) is the tensor

wv
A = CP* Dv where C and D are vectors.

The rank of a tensor may be reduced by 2 by summing over all
components of a pair of contravariant and covariant indices: For

example

OO
T.r..‘pr.- .

can be shown to transform like a tensor. This operation is called
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[

contraction. For example, the contraction of the tensor A BU
is the scalar product A“ %D where A&k and BU are two vectors.

There is no difference between contravariant and covariant
tensors in rectangular Cartesian coordinates in a Euclidean
space. The difference comes in when curvilinear coordinate
systems are used, or when the space is curved.

: : X8 Y-
The covariant component of a contravariant tensor T

is defined to be
.npj)é.”.
FTjHOQSY“‘ = —r. ....ﬁaq}}.jlgu :311&

(14.23)

Thus the indices can be raised or lowered by contracting a new
tensor made of products of the metric tensor and the contravariant
tensor. In order to define the contravariant component for a
covariant tensor T'"'@%K“" we need the contravariant components
of the metric tensor, which we define by the solution to the

equation:

XA <
j rj/( - S{ (14.24)
1= ¢
It is easily shown that%r transforms like a tensor. Eqg.

(14.24) is therefore invariant under coordinate transformations and
Y€ -

s (%
LM RIS i b kSR
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A tensor is said to be symmetric or antisymmetric with respect
to a pair of contravariant indices or covariant indices if the
exchange of a pair of these two indices results in no change or

only a change of sign:

_.»-c*..ufg.” _— ”'}3" > I

\ = 3\
(14.26)

Any tensor can be written as a sum of symmetric and antisymmetric
tensors. The metric tensor is, by its definition, a symmetric
tensor. The symmetry properties of a tensor are preserved in
tensor transformations.

Tens oxr densifies of rank n and weight w (integer) are entities

with n4 components which transform according to the following law:

3:-....."-',-. i \'_3__7_(_5( \PMT' axi‘b g—,,,.v.,,.

>x'4 2%V (14.27)

x>
where L;an is the Jacobian of the coordinate transformation..
Similar laws of transformation exist for covariant quantltles
The wvolume ’nﬂé¥' can be shown to be a tensor density of weight
unity.

An important tensor density of weight one is the Levi-Civita

Vfd" ,
tensor density & defined as
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\A\)J’O" + 1 when r}-Df T is an even permutation of 1 2 3 4

S

- 1 when PLQFG“ is an odd permutation of 1 2 3 4
0 when any pair of rm«fqﬂ are identical.

(14.28)
pogy

Using & the determinant of a tensor of second rank h

is given by

Y VAT |
\¥\*V\ i %{é&Fkaj} 6;v/5 ‘\rVL’L\dqutPcr}\,’g

(14.29)

b. Tensor Calculus.

We now obtain rules for differentiation for tensors. Ordinary
derivatives of tensors are not invariant, since the coordinate
intervals dx are not invariant. Further, the derivative of
a funcfion f is defined as follows:

\.. +(at pont Y - #(ak ?o}nt ¥)
eop | XM (kP - k™ (kP (14.30)

As we have said, addition or subtraction of tensors can only be

carried out at the same point. In orde to carry out the differen-
tiation it is necessary to transport parallelly the value of the
function at point P' to P, then take the difference and then let
P' approach P.

Because tensors at different points of space transform
differently, a transported tensor is different from the original

vector by a small quantity. Consider the case of a vector AVk
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transported from a point P' to P:
A“( P') = A\k(PW - SA“N (14.31)

\ “ !
where AHKP) is the wvalue of a vector A (.P )at P' transported

to the point P. 6A‘k generally depends on what coordinate

\kz
systems we use. Its form is determined by requiring that A P')

transforms like a vector at P. Further S AP\= 0 when A‘L= o,
and when AXM'—' X%(P‘)'XH(P) = 0. The simplest functional

form of QAEk for which these conditions are satisfied is::L

oA - " AT ax®

fo (14.32)
W
where T‘ pe is some three-indexed quantity, which will be
M
determined later.’ (It should be noted thatT‘ is not a
: ‘ o —
as Wil be shown later, W
tensor,A) The derivative of A with respect to x is denoted
N

by A)' UJ is given by the equation:

M \3 N

A(P) - AR

M .
A)‘V = #;m(: axV (14.33)

From Egs. (14.31) and (14.32) we find

H _ oAt T\H A
A )V = t v
.axv f (14.34)

lA space in which a law of parallel transport like Eqg. (14.32) is

said to have an affine connection.
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We now determine T}::. . This we do with the aid of
geodesics. Geodesics are equivalent to straight lines; an
observer moving along a geodesic should always find himself moving
in a direction tangeﬂt to the trajectory. This is one of the
most important properties of a geodesic. By transforming
AXR(P\ = XK( P'\ = XK(P) parallelly along itself from its origin
P to its terminal point P', we obtain another vector AXM(P') which
extends from P' to P". We can again transform AXK(P') parallelly
along itself from P' to P", and so on. After many steps a broken

(Fig. 14.1). Letting AXM(P)‘;O

curve will reach another point Pl'
but keeping P and P' fixed, this broken curve will become a

continuous curve. According to Egs. (14.31) and (14. 32) we have

the following relation between AYH.(P) and AXH(P') :
[ :
AP - T ox) ox= ax"(P)

(14.35)

Divide Eqg. (14.34) by the square of the curve length between P and

P', and in the limit P'—%» P, we have the equation for the curve

Li | XD XSy T

\ OS NS

fent v t e 85 a5 ) e
o™ o o
=X _+T =0
ds+r = fU 4SS ds

This curve will then have the property that the tangent to the curve
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YN

at P (the direction is the same as QX at P) can be obtained
by parallelly transportingthe tangent at another arbitrary point
Pl to P. Hence curves of this kind are geodesics. Compare Eqg.

(14.36) with Eq. (14.1l) we find

}:—“ * 2 3w (cgqﬁr*'ﬁrv,f " dpe; b )
_.l_\ (14.37)
15ed = depd - TG

»
In a coordinate transformation ‘r:r_ does not transform like

‘ »
a tensor, the transformation law for T;_ is

1§ ax'd ax¥ ox® 'T‘O_r sy a*x7
wy  =2Xx7 ax™ 2P T8 Sy ax Py (14.37a)

It is easily shown, though tedious, that, with the expression

. M ,.
(14.37) for’\—;_ ) A J Y transforms like a mixed tensor of the
second rank in coordinate transformations. A /1) is known as the
covariant differentiation of A‘& with respect to the metric

tensor By considering the parallel transport of two

Japs -

vectors A"& and ﬁv and by considering the parallel

transport of their product A‘* Bv Egq. (14.37) is easily extended

to contravariant tensors of arbitrary rank:

XY A __ BV

(14.38)

J
B o Vo apt
+ .\;v T ‘\'_l‘—;v—r +---
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We now obtain the covariant dif ferentiation of g}ﬂ) with respect
to itself. First we note that at a particular point P the line
element ds" :3 IBdf‘dxcan be reduced to the form 35 = d)('“dxyg
by shifting the origin to the point P and defining the new

!
coordinates {:X ﬂ% by an equation similar to Eq. (14.35):

IM'—IH' \ X X'“_

f" (14.39)

™ () - - .
where ‘fq_‘P as a function of the old coordinates X

‘X"

is evaluated at the point P. 1In the new coordinate system we
' M/

find that A\(H('PB =AY (P\ , and so the covariant

differentiation of a tensor is the same as the ordinary

differentiation, i.e.

...-o(ﬂr'—..

2T BT
T VS v S g R4
=X (14.40)
Hence in the {X system "SMUO' O . By differentiating
the expression rﬂluvg))fl %K
!
one further finds that ng\)o_ = 0. Since in the {X Mi
J

system the covariant differentiation is the same as ordinary
differentiation. Since a tensor vanishes identically if all its

components vanish in one coordinate system we can conclude that

.3 g = O (14.41)
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Similarly we can define a three indexed quantity'tF,r- such
that the parallel transport of vector Ar.,~ from P to P' results
in a change which is

Tt AT
‘éfav\ - 1¢:q_ f%f>£9(

(14.42)

and the covariant differentiation of a wvector A\w with respect

to the metric tensor g V is:

- o f
va Ap)v {u A_f (14.43)

It is easy to show that the following law holds for covariant

differentiation: B
T...a/é‘..) = " «ﬂ' \ + +T\ -—T" {;V
.M\M)w _)‘é

(14.44)

N ,_,.
- _YJ
+F‘}e T"N‘)"' * MeT-"-fV- K tkf
so that

H = M H 14,45
A B,Q)oC A a Bt A Bwo\ e
YK

fr can be obtained by the following manipulation:

o
(97A9) 78" A= 8 (A, ¢°A°‘r”°‘) e

(jH\?Av\ o (.Q A \ - ﬁdUAv\ (14.47)

_ MV % M m’
'ﬁM Av)g—fgo‘ Av—r;d".{-‘g )O""Ap
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Multiply both equations by and sum over , since

V_ ¢V vy,
rg O]M = S this results in eliminating j and
A P e
replacing the index VY by/B . Substitute for Lﬂ_Eq. (14.36) ,

obtains the following equation:

o( &

= M
AOLY;;G‘ A LT (14.48)

Hence (0&1"' "Q?‘Acfwg o du\hw} wollcs o8 oad € \:, 5)

=2 =Ty
BT Lo (14.49)

Hence the rule for covariant differentiation is

e Ohen t - e olee e T &
(T”.N"“ )J. a (T..-N..--),¢+ + cqg T-.M".-"
R o W - et (14.50)
nETI

Using the above rule for differentiation and from the

&

symmetry properties Of'TjGT one can show that the following -~

quantities are tensors:

(14.51)
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(c) Curve Space and Curvature Tensor.

We have postulated that a curved space differs from an
Eucleidean space by the important fact that no coordinate system

{&U‘{S exists such that the line element ds2 may be reduced to the

following form:

=% VD
ds e(M)JKy dXx; (14.52)

[

at all points of space; in general the line element has the following

form:

dst= —?HV d)(“cl)(’v (14.53)

M
where Cﬂpu are functions of (X |. This property also
manifests itself in that the parallel transport of a vector Ar\.
will introduce an affine connection:

sah .- D af T

pa (14.54)

If the space is Euclidean, the affine connection vanishes. If a
constant vector is displaced along a closed curve, and if the space
is Eudlidean, then%A integrated along this closed curve will

vanish identically:

§ sA“ =0 (14.55)
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and the displaced vector coincides with the original vector. 1In

such cases the space is said to be integrable, and parallelism can be

established between two distant points, for, considering two distant

points P and P_, the parallel transport of a vector from P to P

1 1

will not depend on the path of choice. 1In general this is not true for a
curved space; two vectors at two pOints on the longitude on the
equator of the earth pointing towards north can be displaced parallelly
along their meridian circles and when they reach the north pole they will
intersect and the angle is the difference between their longitude.
We shall find conditions for which Eq. (14.55) is true. The
integrability condition is the same as
W,
oo, «+T O AT =0
jV )V AV
(14.56)
We are to find a condition on Y such that Eq. (14.56) is
true for arbitarary‘AbL . Differentiating Eq. (14.56)
. 75
with respect to x , we have
Kooy, f
NP g (LT T A
/\ /\ - ’ /k I .

f
YV o) /L(J
J AV, W AV VW (14.57)

‘Exchangev and W , aibtract the resulting equation from Eq. (14.57),

we find the condition for ‘C;;f;
(Tow Ty T T + T )a =0
hw POV y '‘pw Ty pL (14.58)
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. - -T * T,
’-vaf ldpv/a) SV ap 7‘;00 ,Ofbl) ‘/00 (14.59)

then the condition for Egq. (14.55) is

K ~am
KR))LQP "’O (14.60)
It can be shown by somewhat lengthy analysis that Eq. (14.60)
is the necessary and sufficient condition for Eqs (14.55), and
(14.56). Rpu%;*h is antisymmetric with respect to » and) . From
Eg. (14.57) one obtains the expeession

M M M AM <R HAf)
A;ujx)}AJ‘Vw” jv vef

A) ) 1/5] " (14.61)

Since the left hand side transform like a tensor, the right hand

|
side must transform like a tensor and hencef*?yabp also

| 7 8
transforms like a tensor. R is called the Riemann-Chistoffel
llwf

curvature tensor.

The Riemann-Chistoffel curvature tensor satisfies the following
identities:

(1) ?i vk‘”-n%? M (antisymmetric with respect to
’wa a)yf 2 andly ) (14.62)



35
NN

t ?U)fl) RJ’&)UJ = O (the sum of permuting

cyclically vanishes) (14.63)

o R?)u{f

(iii) The Bianchi Identity
Lo 0
+ R
vaf Hixd N w‘:f jV OUJD/ (14.64)

The Bianchi identity is obtained by first differentiating the covariant

form of (14.61):

A
A,sz)w A/&,wl) /RV A

(14.65)

then permuting the three indices ‘/5 147>, cYclically, and

adding the result, and then substituting the relation

= - M -

Often one uses the covariant form of the curvature tensor which is

(14.67)

R«,@rg o«pv ﬁ,us

Using the Chistoffel symbols of the first kind a similar expression

to Eqgq. (14.60) may be obtained for R’QQT&

- Jva,8] , - [¥8, 5]
+ g ([sa,)1Lva V] 15,6, V]Lr4, )

m’s

(14.68)
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From the curvature tensor one can obtain other tensors by
contraction., It is easily shown,by using the symmetry properties of
the curvature tensor, that only four different types of contracted
tensor exist, they are: g /%a,
RS RERE4™T Ry
apr, Ragt, Ragyd 1 Tpr '
and these four tensors are identical to each other apart from a sign.
The most frequently used form of the contracted curvature tensor,
designated by R is given by
r
Y e 1(f
-+ /4 Vf

SO OF L G
R * Rapew RVJ’;» plp (el (2p] T s

R is symmetric with respect to bA~ and L) . Because all terms

WV

are symmetrlc except {1hf } rk to show this we note that
!

af
{D?I 33 (Qo‘v, * Qag,v " dve, T
q, 0
I Ll

where g* \ﬁd,@\ is the determinant of g. Hence S{f’§ }&
L

is symmetric with respect to F~ and UV

-
-

The contracted Bianchi identity is of interest as it ti directly

related to the Einstein Field equation. Contracting Eqg. (14.64),
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we obtain:

M M
Ropiet '?W‘J’ st Rc’/‘*f ju T O

(14.72)

Exchange P. and §  in the third term and use Eq. (14.62) we have

M
t + R -
wa)d' Rwrf S N YD 0 (14.73)
. nf .
Multiply Eg. (14.73) by g and sum over }o , we find
RN e, ™Mo g M0
. W ! T
LO/U- V] / (14.74)
nw MR MY
Use theproperty that Rwr —’RO'"L«) and RO'UO = ’Rwo—
further contraction of Eg. (14.74) with respect to 1 and
() results in the following equation:
R.--2R ! .a =0
)T T (14.75)
(/—
Multiply Eg. (14. 75) by g and sum over (¢ , we obtain, finally:

MY MV )
(R ~§3 R\)u =0 (14.76)

Mv Wy MY
The expression in the parenthesis is often denoted by CS' E.F: ~;:3 ﬁ:
The Einstein field equation is obtained b equating G to the stress
energy tensor.
There are 16 @omponents for R and , and 256 for R
P ) Tuv MY P

the symmetry condition reduces the number of independent components to

R
ten for R\M) and gM\) , 20 for‘l M"f’(
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Measurement Processes in General Relativity

The act of measuring the distances between points in
space-time is of fundamental importance in the framework of
general relativity. The usefulness of the concept of the
existence of "curvature" in space-time depends on the existence
of a means of measuring distance between neighboring points.
Thus particulér attention should be paid to defining the
precise method to be used in making such measurements.

Thg classical techniques of comparing distances to
standard "rods" and comparing times to standard "clocks"
such as the period of the earth's orbit may not be useful
in the general relativistic formalism. These standards
depend ultimately on the constancy of tﬁe fundamental constants
of nature, e, h, G and the like. Since, in certain formu-
lations Qf the gravitational theory, these "constants' are
expected to vary with the expansion of the universe, they
are not useful in defining an absolute measuring apparatus.

What is needed is the establishment of a procedure for
determiniﬁg distances between space—time points which does
not depend on these constants. Such a procedure has been
developed by Marzke in his A.B. thesis at Princeton, and is

outlined below.



Marzke's Method of Measurement

Marzke's method for the measurements of the proper
times between events in space—timé involves the use of a
so-called "geodesic clock". The latter consists of two
mirrors traveling along parallel paths in space~time with
a light beam reflecting back and forth between them. The
question of how one goes about constructing such a device
will be discussed later. However, assuming this geodesic
clock is set up, we can expect the paths of the light beam

and mirrors to appear as follows.

o F vs
/"”Pro X = srncc COorJ.
el = time coovrd.

Ap—
“+.
]

Fig. 1

Since the paths A'B' and AC are parallel, the proper
time intervals AB, BC, A'B', etc. are all equal and we can
denote this interval by T . If we focus our attention on one
mirror, say that one traveling from A to B to C, etc., and

record each intersection of the light with the mirror path,

39



then we have a timing mechanism whose basic unit (of proper
time) is T .

It is to be especially noted that since each interval
is marked by the intersection of a light beam and a material
body (the mirror), it is independent of the Lorentz frame
in which the event is observed, and of any of the possibly
variable quantities like e, h, etc.

This apparatus can be used to measure the ratio of the
proper time for two pairs of events. For example, suppose
we wish to compare the proper time separating events P and
Q with that separating R and S , we w;uld proceeé as
follows.

First we choose one mirror which travels the space-time

geodesic between events P and R, and then place the second

mirror so that it traces out a nearby parallel to PR.

Fig. 2

40



At some point along PR we allow a light beam to be
emitted from the mirror toward Q , and be reflected back
(dotted line), and record the number of intervals our clock
ticks from the happening of the event at P wuntil the light
beam is emitted (Nl1‘), and until the beam returns to the

first mirror (N21"). Then the distance PQ is given by

= - AT

This can be seen if we transform to a system in which the

mirrors are at rest. Then the situation is as diagrammed

below |
[}
f',
NT |
\\
Fig. 3. 7"' S~ @ = (X, F)
1 %
/I
7
,/
¥r{
X, X

In this system, or any other, we have

2 ,
(p) %= t-x* = (t+ x) (- x)

4
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’ hd b
Now 1;- NIT is the time for the light beam to travel to

: ‘
x, which is just x (since we have defined (f;—MT‘) 3 C(f,""”,’f')

hence
]
N T =T;'X
similarly,
[
sz =‘1’|+X
and
0 = 4NN T .

If we carry out an identical procedure near the events R

and we get
= T
RS N3N4 .
Thus
po _ o) 12
RS N3N4

and the intervals are compared in terms of only the absolute

‘s d .
quantities Nl N2 N3 an N4



It remains to demonstrate a method for determining a
parallel to a given world line. Once this is accomplished
we could, in principle, choose a mirror traveling along that
line and thus complete construction of a geodesic clock.

Such a method was demonstrated by Marzke for a "locally flat"
region of space-time. In principle we can always confine
attention to a sufficiently small region such that curvature
effects are smaller than a predetermined tolerance which we

might set. PARTICLE 3

Fig. 4

@‘nus (mn-n) 1

Thus we wish to”construct‘g parallel to the world line
ACDF of Figure 4. BF represents the path of a particle which
intersects the particle traveling along ACDF, at F. AB and
BF represents the path of a light ray emitted from particle 1,
reflected from particle 2 and returning to intersect the path

of particle 1 at C.

43
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Now we consider a third particle whose path intersects
particle 1 at A, the light ray BC at X, and BF, the path of
particle 2 at R.

We imagine light rays constantly emitted from particle 1
and reflecting off particle 3 to return to the world line of
particle 1. We select a particular light ray DEF,#¥ which
returns to particle 1 at F, and intersects particle 2 at Y.

A geometrical argument, based on Figure 5, in which we
observe from a frame in which particle 1 is at rest, demon-

strates that XY is the required parallel

Fig. 5.

. A

' 1
Point A has been arbitrarily chosen to be at (xLO, t=0),
and C is assumed to correspond to the point 2a in our system.
B then lies at (-a,a) since ABC is a right.JL(path of a light ray).

Point E lies at (-b,d) thus defining the lengths b and d.
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Since DEF is also a right angle, D and F must lie at (o,d-b)
and (o,d+b) respectively.

Point )( , the intersection of AE and BC then lies at

-2ab 2ad
b+d I b+d
While point vy , the intersection of DE and BF lies at

-2ab 2ab
(—b+d y OB de)

(
Thus the line XY 1is parallel to the f axis and

thus parallel to ACDF.

Extension to measurements in non '"locally flat" regions.

The development of a measurement method in a locally flat
region provides a procedure for making measurements in extended
regions in which the curvature of space-time is non-negligible.
Suppose, for example, our two mirrors begin motion on parallel
world lines, the existence of the curvature of space time, or
equivalently, their mutual attraction, results in the gradual

decrease in separation between the mirrors. This results in



variations in the basic unit of time, T , and hence leads
to inaccuracies in our geodesic clock. The magnitude of
the inaccuracy is easily estimable. Suppose our mirrors

are traveling the world line paths shown in Figure 6.

Fig. 6.

PoinT

At any point along these curves, the time interval for
a traversal of a light beam between the mirrors is propor-
tional to the separation distance d. Then the fractional

variation in this time for two points along the path is

2% a
dl dl

proportional to

Assuming small curvatures we have

sinO“'é = —-‘-’;—

sinS"'£=

46
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and, since S.= @ , then

T d>/ \d?

Here, h is the elapsed time between the two pairs of
points, and dl is roughly the radius of curvature of the
world lines. For cases where I) compares with dl' this
error can be a serious problem.

Suppose, however, that we divide the path h , into N

portions, then the error in each portio~ is given by

(&) (e

§

assuming that a new geodesic clock is constructed in each

portion. Then the overall error is then

T N\d

2
41::=1q(917 1ad l (E_) —P» 0 as N —pP 00
P b 1

Thus we can make our geodesic clock as precise as is
necessary by using smaller and smaller intervals. Hence

measurements of space time distances over regions of any

4]'



size are feasible usihg a measuring technique which is
independent of variations in the fundamental "constants"

of the universe.

11
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RIEMANN-CHRISTOFFEL TENSOR

i

The first covariant derivative of A represents a

tensor quantity
= ¢4 Poa™
ol A

The covariant derivatives of tensors of the second rank
are defined analogously to covariant derivatives of vectors.

For the case in which the tensor is A»;v we have

M,
at Rk st r*a%
e T axw yw )= < \W )V
Substituting the expression for A)*;v
> n
M A M % =
Al gy = ——— +A T + T/ A w+T. . A e
VW V3 «*V, W oV ) yw 3
x _pE o, o &
+ — —-—
Tyw TexA Taw?® v~ Tdw Tgy 2

The only terms that are altered if y and W are inter-
changed are the second and last terms. These two terms can

be written as



The second covariant derivative of A)l can also be

written

2 A M 4 x M = €
275wy = 2wy + T Aoy + Ty By + Ty Tdn B
T I Ty ey
Tly B aw t+ 2 (T&m,v Tav Tgw

Subtracting the two expressions for second covariant deriva-

tives of A)L one gets

e = 2 M roo_ Mopec o\ 5 €
vw = AT 3wy (Tﬁv,w F'E)\:)y+ Ty Tew =~ Tody TQV)A

€

where RV\ne)‘ is the Riemann-Christoffel tensor.
From the definition of the Ré}mann—christoffel tensor

the following symmetries are apparent:

Rywe! = - Ruye™

Let is now consider a constant vector AP. The covariant

derivative of the vector will wvanish.

M o

AP§y=A5v+I‘°‘}¢A=O (1)
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If this equation makes dA» a complete differential

[

between any two points is independent of the path of integra-
tion. This vector can now be carried to any point by parallel
displacement. Such a procedure will give a unique result
independent of the path chosen.

The first task is thus to determine under what conditions,
if any, at is a perfect differential.

From the theory of differential equations dAH will be
a complete differential if ﬁJ; A% is a complete differential.

This condition is



The condition that dA}* is a perfect differential is
satisfied if the Riemann-Christoffel tensor vanishes. This
means that if vai)*==0 we can construct an uniform vector
field over the entire space.

This interesting property of the Riemann-Christoffel
tensor is very intimately related to the properties of the
space. For instance it is easy to imagine describing a uniform
direction on a plane but there seems to be no analogy on a
sphere. This would seem to indicate vag? will vanish on

a plane but not on a sphere.

Condition for Flat Space-Time

A definition of flat space-time is a region of the world
where ng are constants in some coerdinate system.

When the Iu» are constants the 3 index Christoffel
symbols all vanish since they contain only derivativeé of

However, since these symbols do not form a tensor

@

gﬁy .
they will not in general continue to vanish as other coordinate
systems are considered in the same flat region.

Recall now that the Riemann-Christoffel tensor is com-
posed of derivatives‘of gPN and products of derivatives.
Obviously if gyﬁ are constant the Riemann-Christoffel

tensor will also vanish. And since it is a tensor it will

S



continue to vanish as other coordinate systems are substituted
in the same space.

Hence the vanishing of the Riemann-Christoffel tensor
is a necessary condition for flat space time.

Another way to show thatspace is flat is to consider

the angle between a unit vector and a geodesic.

o ¢ =X
cos © = go(%)\ dx ) where >\ = unit vector

ds
dx% dxs
© is an invariant angle if gR%‘>\ ‘g 35 - 0
S
dx s o (g% © .
(cos 6) 6 dS = gb(% dS [>\ 8ds )\ {\\a"s"');s:l . (2)

The second term 1s zero because

8§ (gx®
dx dx .
35 (ag—);s = 0 from

the equation for a geodesic

!
o

ol
dxs dx% dx6 %_ dfx d2x @ dx d.xS
+ Toob — + Iy — —
ds S o 2 o,
dx ~ ds ds ds / ds ds ds

Now consider gugﬁ )\e = const.

= o
0 = (ge<%>\ >8);6 = gi(% >:<>g; (S gg—



&

ol .
i — i o)
Since g“% s and )\ are in general not zer
must be zero. Hence the first term in Eg. (2) is also zero.
Thus cos © is an invariant in flat space-time.

From the definition of the curvature tensor

RWJQL F@,\u - TQ}‘:’W + rx{’;,ré’f, - .2 rg‘w

one can straightforwardly verify the Bianchi Identity

M " -

The proof is long and reasonably tedious. One must first
determine the covariant derivative for a rank four tensor -

then simply sum up the terms.

%

ST o

gcre( dgva T 9 -g )
TV,Q TR,V VR,

-
=59 R 9¢Q,v

since the dummy indices ¢ and @ can be interchanged.
Let g represent the determinant formed from the metric

tensor

()
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dg is found by taking the differential of each <3ﬂy
\Y
and multiplying by its co-factor g.gp . This formula is

quite transparent if the determinant is expanded by cofactors

and each term is differentiated. Then

v
< - g d9w T T Iy ag”

Equation (2) now becomes

~R  _ 13239

ve 2955 %/(Qmﬁ)

The minus sign occurs in the radical because it is

1

always negative for real coordinates. Differentiating again

TVQQ))* i (%ﬁ)

I

Curvature Relation for Empty Space

Contract the Bianchi identity VYV =)A
}* PO 'Y —
Rva :,5' + Rw¢g ’v + RG’VQP,\” 0

Multiply by ng

s o o

M
Rw 5o *Rwe 3p- Rggw =



Contract over {| and W (f =w). Recall R\m,q‘}‘ = R‘;-W})ol

R30~ - Rw@’m\;y - Ry :’ = Q
\
R lym
n
a
Multiply by g}A
p . n _
g (R.)d“'—zRq- ',"\ = 0
q
%GMR'J' - v =—(R}N—59”¢R). e
Yo

This is the relation that R satisfies in empty space.

Our result is very similar to Einstein's Equation

where T}w is the energy momentum,

Special Case of Geodesic Equation

The general form of the geodesic equation

o e el e
452 B¥ ds ds

5¢



is rather intractable because 16 terms in @ and ¥ must be
summed for even one component of xuc_ Let us consider the
special case of a slowly moving particle in a space which is
= -1; w4+l .
nearly flat (g:.Ll 1 9o 1 gueuo for X # Q@ )
This is the classical situation and we expect Newton's

gravitation law will hold.

Since the particle is moving slowly we can in general

2
neglect the spatial portions of ds .

o i
dx dx
—— N~ m——
ds 1 ds w1
since
2 2

where
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Since é}-{—c—) -1 T° =0 and # 4 Discarding off~
ds oo s : g
. . X
diagonal terms of g}*e and recalling g = -1
42k __1 agoo
c2di? 2 38
Comparing this w Newton's Law of Gravitation -
2 k
dzx 5 = + % - (grav. potential)
c dt c ax
The gravitational potential (b is - & x' so
G r2
13 _ _1 3 e
ZBXk 0o c2 bxk r
and
_ _ 20M
Yoo 2
cr

However, Yoo is still arbitrary to within a constant.

This constant is chosen so oo™ 1 when r-»oc, Finally

1

5¢
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Classical Field Theory

In the previous section we showed that the geodesic

equation in the classical limit,

with

v Be = - 4Te P

We must now generalize our idea of density in a way which is
similar to the generalization of electric charge density to
current density JM in electrodynamics. The generalized
density must be some kind of tensor since the geodesic equation

contains the metric tensor.

The Energy-Momentum Tensor

If we define a Lagrangian density A( %, aa/&)x“ )

such that the Legrangian is given as



L = S A av ,

the equations of motion of the system are obtained from the

principle of least action,

§ s

3 g,/\( $, agaw‘ ) dv dt .

= 0‘

If we adopt the coordinates

X = x, X, =Y, x3 = z, §$ = ict

and write

ic dv dt = 4~
and

d52 = c2 dt2 - dx2 - dy2 - d22 '
then
s = —}zf/\( g, 3%kt ) an

Writing aq/ak" = ?,.( we have

__ i A .
- cﬁ{ﬁsq a%é%,‘}d.ﬂ. .

)



This expression may be simplified using the identity,

> A ‘ d ( AA A
°__ $ = 83 2 _{ 21 \ + 28 .
% Ké%,d 9() éu“( 39,4 39,4 1«

and the fact that 6%- vanishes at the end points of the

integration. Now we have that

-t B e

but since éﬂ is arbitrary, this reduces to the equation of

(RN o

motion,

= 0

d (Al\ \_g_/;:

We now look for some conserved quantities. We can write

Y
dx% 3% A 39, xS

3N 3%, 34 g

——————

Using the equation of motion and the fact that

3%p _ F 9%y
3o Ax*IxP IxfF

we have

bl



4
oA 3 é AA ? QA 63}4
- d
3xt Y A9,y A% Ix P
B (? 3A )
= — o
dx B 3%,p
If we write -§—A— as -§-A— wae have
MY ke
A
—a_—e‘[l\éj - 9;0( dé— ]= o -
dk 1p
Introducing the notation
e f o= A éf S —é—/-\
« )
99, p
. we have
dT.F
dx P
Thus the TQ‘P'A represent some kind of conserved
quantities. The T«4’A will be constant in time and we

expect that the quantities,

will be associated with energy and momentum. Thus we write

the four-momentum, P* , as

61



P = constant S T Y av .
o L
The constant may be determined by considering Pq_ which

in our notation should be &« E/c . We have

4

4 av

P = constant S T

and

T4=_§§A+/\. (é=§j)

e

By comparing this with the usual formula relating the energy
to the Lagrangian, we see that - T 4 must be considered

%

as the energy density of the system. Therefore,

We can now generalize this result to the case that the
integration is over an arbitrary 3-dimensional hypersurface

element dSX , and

This follows from Gauss' theorem

63



'
§T\‘ds = dTu da = 0 .
ol ¥ .
X

13“§ is called the energy-momentum tensor.

It is also possible to construct other conserved

quantities when po is symmetric. We write

M¥p = S(x"dpP - dePd)

.—.--éj(x"TPe -xP Tde)dse .

If M 1is to be conserved we reguire that

é o o €
g_;.e(x TP —XPTc‘ )-_- o ,

using the fact that

€
YA S UL S A § O
ake ake 6)‘6

this condition reduces to

- & - g
«

p

of
M g is the four-angular momentum of the system and will be

conserved only if SP«P is a symmetric tensor.

6%
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Td’ is in general not symmetric, but it can be made
symmetric by adding to it a term of the form
Ry
3 A«
dx
with
¥ _ %
ﬁq p h -¢q P hd
$ince
¥ 11: ¥
3Pt st 34, )
e ——— T ——— = -— S ———— =— e ————————————— = )
u b Ixt IxFIx P Jk¥In®b
T.‘9 still satisfies the equation
Q Ty ¢
= 0
x P
Energy-Momentum Tensor for a System of Free Particles.
The mass density for this system can be written as
? = z m A é ( &~ ﬂﬂ )
A
Then the four-momentum density will be ¢ U “ with
o « : . o LT
U = dx /A8 . Since this density is equal to —*‘—5— we

o 2 . . .
have T A AP ¢ u . But since the mass density is the



8
: P axf
time component of the four-vector T s ¢ we expect that
7% - p Py ub

In this notation Ud U“ = 1, therefore

¥ = - fc

r¥% L 9

The Energy-Momentum Tensor for a Perfect Fluid

The conservation equation for the energy-momentum tensor

ATe® _
Ixp

can also be written as

\ 5"'44 + JTq" —
AC Jt LIRS
q .
T d
9T, + AT} = 0
et ala
where Lv'a take on the values, 1, 2, 3 . If we integrate

over a volume V in three spaces the first equation becomes

N
. :i g T44 av + :izﬁ av
ie Ot dxt

A
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or by Gauss' Theorem,

é—S(—'I"*)dv= L c %, Tt at
It 4 4
where the surface S surrounds the volume V .
The expression on the left is the rate of change of the energy
contained in the volume V, and therefore the quantity on the
right is the amount of energy transferred across S per

unit time.

From the second equation we have

L

S(_i T4 ) av = _§T,ﬂ df, .
At c j

v 5

On the left is the change of momentum of the system in the
volume V per unit time; therefore § Tij dfj is the momentum
emerging from the volume V per unit time. The component Tij
of this tensor is the amount of the if"component of the
momentum passing in unit time~%hfeagh—e—aﬁé%-é§me through
a unit surface perpendicular to the x:paxis.

Now, i1f we consider a perfect fluid, the energy-momentum

tensor in the rest frame of a fluid element 4V will be

.8 = p §4
T, =0
—T44 = ?sz 6
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10

where P 1is the pressure and f is the density. We can write

this as
P 0 0 0
0 P 0 0
To‘P =
0 0 P 0
0 0 o =€
The requirement that T £ o leads to the condition P % e/3

In this notation we have been using

and

2 2
ds = c2 dt2 - dx - dy2 - dz2 .

This requires a metric tensor of the form

Thus we have that



If we now change to the coordinates

we have that

” «
xE QY
and
-1 -0 0] 0
g A = g <P I ax A _ O -1 0 o0
IxX JIx P 0O 0 -1 0
0 0 0 1

In these new coordinates we also have that

11

6?‘
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We now label these proper coordinates (primed variables)
with a subscript zero and consider a transformation to another

arbitrary coordinate system.

)

Ixg dxf °

T”’ _ dx” ax

* f

o
x4 dxY o 11 x4 Yx? o 22
) 3x T dx 170 * 3x 2 3x 2 ©
o o o
dx 4 Ix?V o 33 dx# IxV o 44
3 3 o + 4 4 o)
3x ~ Ax dx dx
o o o
and
g o ax” 3x) o
Ix* IxP °
o o
If we add
dx ¥x b _ Ax  Ox
6Xo axo on axo

to the equation for T Y above, we find that

dxX& Ix )

) Y
TH =-g# p+ (P +€)
T T
(@] (o]

But because the x;‘ are proper coordinates,

lo
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and

mn, e

Field Equations

If we wish to obtain the Newtonian equations of motion

in the weak field case, the field equation must have the form

E]” 30‘9 = (constant) T B

L "

where (O is some second order operator. In the above

discussion we have shown that

aT, b
3 x P

= 0

for a Lorentz metric. For the case of a general metric,

this condition becomes

T ¢

7P=0

This leads to the requirement that

11
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<
)

K“Dll 30(@) P) < 0

SIMPLEST QUANTITY
The < epmmstse which will fulfill these conditions is

R¥P - 1,2 4%P R

Thus we obtain the equations

qu —]/2g“9 R = const. T *¢

which are called Einstein's field equations.

n
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SIMPLE SOLUTION OF FIELD EQUATION

We would now like to determine the solution of a par-
ticular problem - an isolated particle continually at rest
at the origin. In obtaining this solution we shall be guided
by our knowledge of the type of solution of such a particle.

In particular -

1) at infinity Newtonian field theory should be applicable.

ds2 = - (dx2 + dy2 + dzz) + dt2

2) the solution should be spherically symmetric

3) time is defined in units of 1/c - the length of time

for light to travel 1 cm. 1/c v 3.34 x lO_ll sec.
length is defined as usual in terms of cm.

. . 2 28
mass is defined as ¢ /G = 1.39 x 107 grams

The interval for Euclidean Space in terms of spherical

polar coordinates is

2 2 2

as® = - ar® - r2®.® - r23i56d¢? + dt
The most general form of the interval possible without
destroying the sperical symmetry in space is

ds® = - u(r)ar’ - V(r) (£°de" + r’sin’@Ad4’) + W(r)at?



Let ri = V(r) r2 . Then d52 becomes

r S 2 . 2 2 2
ds = - Ul(rl)d;r;— rl(de + sin" ©d4d®”) + Wl(rl)dt

If the functions Ul and W1 differ from unity by only a
small amount, both r and r will have approximately the
properties of the vector r in Euclidean space. Hence it makes

no difference which we choose as our fundamental radius vector.

Choose rl and drop the suffix.

dsz = - ex drz - r2d62 - r2 Sinzg d¢2 + ev dt2

where >\ and y are functions of r only.

From our previous specification thuat as r-—Qethe gravi-

tational field diminishes).. )\ and )Y must go to zero as ¥ - oo.

The metric tensor g becomes

v

4
The determinant g obviously is simply —e)‘ e? r sinze.

Since 9
o o1
9 = g
pv% ‘ gpv
y —e_)\ O O (@)
g = Vo
o} Y O @)
o o - '/Y"‘siu"e O

14



15

- 3 =
The g-)Jv vanish whenever }A # VY so
¢ 1 oo 9 ’259 d
1“.’“ =59 (—3—35’+ —8-;2;— Bx:') not summed
The following cases are possible
M 1 pp 9 1 9
Tiy =5 9 =3 —,(ln )
M A
v 1 vy 39
r ==-3549 ——H"
I 2 X
1 Yy O 19
Ty o e ese—
P T30 S e g
0 —
PPV =0

By carrying out the differentiation it is easy to determine

all the nonvanishing T's.

| 1
]_" R

W 2

2 _ .3
Na = T3

4 1 I
Ta=3Y
I"\ = re—)\
22

3
1213 = cot ®
\ -N
l/&rv I‘,aa =—r sin2 e e
2 .
33 = - sin ® cos ©
v _ 1 VN
F44_— > e \V)
-t g R = 8T
2 Iy Py



16

where

pr7 R R
and

M ) I‘y o

Ry} = T -T - r s o
ywe - Qv)w Qw,v <Yy Q\.u o\ Qv

In empty space, however, the mass-energy tensor vanishes

and the Einstein equation takes a much simpler form.

oC oy
R=R, =9 R,..‘cy
Then
1 1 oY
R,w"ig)“R:R}“—'z'gpvg Ray =0
R,y - & 0

[ 8o~:p Ry =

Finally in empty space we have

R = 0

)w

ol K o o
R.w=T -T s o P oo
N \ec IRL S e~ | g I Txp

Substitute from the list of nonvanishing T''s



P

11

+
+
=
PN
e’

2 | .3 | _ 4
" TNz T Tulia - Tyl
| /
101 .11 o1 o142 NN 1N/
i i AR B I A -l Sl Y
r iy r r
U] 12

py = T 2 Tzz,«-c * 1“:"2 rzqé i} Fo?q Taa
=;‘Le Ta" %‘\. Tpa * Taz T2y * T3 Tak * Tsj Tz
- Fl: Fz!z - T\‘; T‘l“l - ré I‘zl-.z - F\‘:t 1.“2'2
= - csc29+ e.)\(l- Nr) + COtze‘*' % r)(e—)\ +_\9_~rv'e-)\

i

it [l—}\'r + % r ()\'+v’)] - 1=0

X 3 R R«
33 - 13,3~ Tagw ¥ Txalag ~ Tecg T3y

= 9 | -) 2 \
~_5-;-T33—S—9T33+P33

3 3 % 3
gy + T3 T'az + I3z Tyl

\ \ 2 \ 3 \ 4 \
=Ty T3z ~ Tha I3z =~ Tz Taz = Ths T3z
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= sin29 e_)‘ -r sin2 SXe—} + cosze - sinze— sin26 e.x— cos26
- - ‘ -
+ % r sinZQXe » + sinzee)\ + %\)r sinzee A

/
» r>\+%rvl)-—sin29=0

NI =

- /
sinze e (l-r N+

sinzee_)\[l + % r (V'—)()] - sinze =0

=V =4
Ry = Ta e Tan e + 7% - R
44 44 44 x4 " 4¢ g 44
_ 2 4 _ 4
2| ERSL 41
~ TaTaa - T\3Tay - Tialag
S TR TR ‘52 S S Y A T 2 N BT N Y-\
= - =9y e + =YV (A=-V)e + -y *e A - 1'\?‘}\le
2 2 4 4
V-
_Ye
r
O v=A A B S = S BV RV VT _
R44— e Eiv -ZV +Zv>\-? = 0
The equations which must be satisfied are:
L 1y N 12
Ry =3Y -3gVA-3 +zy =0 (2)
~\ 1 /
R12=e E"‘I" 5 r(v'-)\;] - 1=0 (b)

R = sinze e—% 1+ -Ji' r(\"—)\'q - sin29 =0 (c)



WA 1 ow 12 1.y v | _
R, = e EEV-ZV +ZV)\—? = 0 (a)

In Eq. (d) the quantity within the brackets can be set

equal to 0. Then adding Egqg. (a) and Eg. (d)
' 1
vV + N =0

Since ¥y and )\ go to zero as r-»=oo this quantity can

be integrated to give

Eq. (b) becomes

Let ev % . Then

I

¥ + r‘%l= 1

integrating
yr¥ =1-2m

where 2 m is an integration constant. The integration constant

is determined from previous comparison of the geodesic equation

with Newton's Law of Gravitation.



r
Thus

&’ =1 - g}? e)\ - l2m

1 -2

r

2
ds = - d; - 2de - 2 sin%e d¢2 + (1 - g_r_n) at?
1- &£ i
r

As r-= oo this equation approaches the nonrelativistic
expression for dsz.

Note that for r>2m the interval d52 is the normal
timelike interval. However for r<2m the interval becomes
spacelike. At r = 2m there exists a si.'gularity - the
Schwartzchild singularity.

2m

At the Schwarzschild singularity 1 = in terms of

cgs units

Therefore, at the "Schwarzschild radius" the gravitational

self-energy of the body is equal to the rest energy. A particle

of mass m would need energy to escape so this body must

convert all its self-energy in order to escape. A body initially

within the Schwarzschild radius would never be able to escape

to the "outside" world.

Jo



What is the "Schwarzschild radius" for some familiar

bodies?
r = 2GM
s 2
C
Qrotons b4
2x6x 108 x 1.7 x 1024 -52
rS = 53 = 10 cm
(3 x 107 7)
sun:
r = 1.3 x lO28 X 2 x lO33 = 2.6 km.

If the total mass of the sun were contained within the

"Schwartzschild radius" the density would be -

_ 2 x 1033 =106 o
Q ) 15— gsee

§x27x10

This gives the order of magnitude of density for which
relativistic effects must be considered.

At the Schwarzschild radius the coefficient of dt2
vanishes. This means that light leaving the body would be
infinitély red shifted. An observer outside r, would say
the light takes an infinite time to reach him. All matter
within rS is thus invisible to outside observers. However,

electrostatic or gravitational fields of a Schwartzschild

1
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singularity can be detected so the singularity can be felt but

not seen.

The Schwarzschild singularity can be eliminated by the

appropriate coordinate transformation. Let

2
r = (1 + EE) r °

2r
The new metric becomes:
4 2 2 2 -
- _ 2 - 2 -
ds2 = - (1 + -E-n:) (dr + r d® + r sin 6d¢2) + E---[P--/--ZQ-_E_:- dt2
2r l+m/2r

This is called the isotropic polar coordinate system. It
is the coordinate system on a falling bod_.
In isotropic rectangular coordinates the metric is:
2 m\* 2 2 2. . (l-m/2F) .2
ds =—l+-t (dx + dy +dZ)+———-: dt
2r (1+m/21)
Aside from having no singularities these coordinates have

some interesting advantages. To obtain the motion of a light

pulse ds =0 so
A

dx

&)

At a distance r from the origin the velocity of light is

dy1 az\: 3 (1-m/2§)2
*\3c) T\& T T =6
(1+m/2r)

l-m/2r
(1+m/27)

in all directions.
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Another consequence of the isotropic coordinates is that
i
2

the coordinate length (dx2 + dy2 + dzz) of a small rigid rod

does not change when the orientation of the rod is altered.

g3



Static Field Equations for a Perfect Fluid

The non-vanishing components of contracted curvature tensor

were found in the last section to be

R,. = R N - U
ll 1 4, i L™

- ( V' =-1) ‘&
R = { + f - \
22 € ( -

’ ]
R,, = Su'0 e')‘[ ‘“"’1” ] - S @
33
/ /
eV oY DI ML S ]

Raa = C 4 4 ~

We can easily find the components of 9;“ from

[}]

VS
R’ = 3 Rua,

and using the values of given in the previous section

we find




fs5

- 2 -
L3 -el? ROY- ) ] . L
3 ﬂ.L 1 [L"
n 2 t 5/ /
R, - e~x[-g__o_+_x_.\z-i],
y % 7 noe

From these results we can calculate the scalar curvature R, and

o
R= R,
11 4
N , Voo 0
(V- W)
_or 0 rxr- -2 ] «
nt |8 n~

We are now in a position to write out the field equations

for a static perfect fluid. The field equations can be written

as
J . v L )
RP - /‘L 3}1 R - g‘“- T}* )
and for a perfect fluid
i Vv
T4 . (Pap) dAT di _%#O’P
ds as

where P and P are the proper pressure and density of the
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- 3 -

fluid. 8Since we are dealing with the static case,

é.ﬂ' = c.!__e ° d._.? = (o]
as S d4s
_ v/
éj = e t
ds

and

Using the fact that

H
b~
n
ol
1=
N
._(
[Y
<

we obtain

-P 0 0 0
0 -P 0 0
T =
0 0 -P 0
0 0 0 -p

Therefore we can write



€7

-4 -
Y /1 AN ! y
_ e S T S 1 S
e * 1 r T
- X <
fx o
or
- X )’ l ‘
1 + -
- gwP = W T, = -¢< [ s ] ot

Following the same procedure we find that

-gWP = g T, = (WIS = - e [ 3-
1! /11 / 4
‘-.?‘__\l + _Q__ + v-A
4 AR\
and
- — 4 - S _ _\_ + ~
gﬁgb - ?T\- ‘4 - e [ —-n:- ;\,1‘ ] {LL

Subtracting the second of these equations from the first

and multiplying by Eﬁ; we have

" 14/ '
e'*[ 0o AY o g V=2
1

r e . =
/
_ _\}__ - — ] -+ _}_ = (&)
IL"L ﬂ_3 ﬂS



§¢

and since we can write

gw dP
an

0
®
|
b
—
2=,
{

e |<=
(4 ~
i
2"
Ceerd

and

the above equation is equavalent to

LT . SN
o 1

Thus for a static and perfect fluid the field equations

reduce to

/

-\ Vv L L
3w P = & [-,;*,Lm]*;u
- '
Te = & [l\_-_\_l\u_‘_
g? n fL.L pt
é_(z . P+ P \)'o
dn L

The field equations in this form will be particularly useful

in our further discussions.
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PIANETARY ORBITS

The track of a particle moving freely in space~time is

determined by the equations of a geodesic

dzx"+ra- axP axy o

a x ) A a— .

dsz f ds ds

Consider first O = 2.
P, o2 oa) @? 2 ataxd a2 e
d52 12 ds ds 2} ds ds 33 ds ds :

From the previously defined T terms one can substitute and get

)
o

2
- sin © -~0s®© ((}—?) = 0 .
ds

+
RIN
Q-liQa
nig

Choose coordinates so the particle movesinitially in the

plane © = W/2. Then initially ?—1—2 =0 and cos ® =0 so
a%e . .

— = 0 . Thus the particle continues to move in this plane
ds

so © = W/2 can be substitutedin the remaining equations.

The equations for @ = 1,3,4 can be easily found by a similar

method.

2 2 2 2
a“r 14/ (dr _-)\d¢) 1 V=hifae\®
'_2+§>\(c-i_s) "e(as"'*ze Vigs) =° @
ds
2 rds ds



From Eq. (2) with 2@ = o&

ot =

This is the law

motion in a plane.

-2 _

+y EE = o0 (3)
- g‘dr
-2 nr +c

L n = r? gg’= h  where h is constant.

z

N

of conservation of angular momentum for

Multiply Eq. (3) by eV
v d2t Y | dr dt
e’ — + Y i as 0
ds :
d , vy dt
a ¢ 3 0
d -
a£:= e ? = %% where is another constant

of integration.

Qe



Now use

1

the metric equation,

= - e%(dr)z - £? sin’ S (;—E—’)z +

ds

recalling that

ae _
= =0

o2y’
ds

Substituting the two integrals of the motion obtained

above into the metric equation:

)\ 2 2 _
e éf + r2 E~ - eV k2 e v -1
ds 4
r
But
dep 2 dr _ h dr
3 - b/ ds = 2 deo
r
so
\_(_rz_czz)z N S
3 r2 ® r2 %
Multiply through by Y:= 1 - EE
2
b odr + EE = k2 -1+ 2m + 2m
r2 d¢ r2 - r r

Let 1/vy=10U

do

2 2
2 -
(9_9)4_[] =]f____1.+_2_I_I_1U+2mU3

H

‘:
(1 )



Differentiate with respect to & :

2
2 EE Q_E + 2U QE = Zg QH + 6 m U2 g%’
ae 4¢3 d® n° ae
2
9—92+ U = E% + 3m U2
a® h

Compare this with the equations of a Newtonian orbit

2
N T
ad? h
2 2 2.2 do 2
The ratio of 3mU to m/h” is 3h' U or 3 ( 55) . For

ordinary speeds this is an extremely small quantity. The
effect of this correction on the shape ot the orbit will be

virtually undetectable.

ADVANCE OF PERIHELION

Although the small perturbation introduced into the
orbital equation by relativity will not alter the shape of the
orbit significantly, it can change the period of revolution.
This change in the period is most easily observed as an
advance of perihelion.

Neglecting the small relativistic perturbation the

U = -[32-[1 + e cos(¢—u.))]

solution is

ta

91



where e 1is the eccentricity and W is the longitude of
perihelion.
. . . . 2
Substitute this first U solution into the small term 3mU”.

The equation becomes:

93

dzU m m3 m3 3 m3 2
——§+U=—§+3—4+6-—Zecos(¢—w) t5 e E.J.—cos 2(¢-m{]
dé h h h h

The only additional term which can produce an observable
effect is the term in cos(® -W); the period is right to produce
a continually increasing effect by resonance.

What then is a particular solution of

U + U=23 cos &b

Assume U

adsind + b P cos ¢ and substitute.

U =asind + adPcosd + b cosd ~ bpsin §
U =acos® + acosd® - adbsind - b sin® - b sin®d - bécos ¢
U +U=2acos®d -2Dbsind® =A2A cos §

Hence the particular solution of the relativistic orbital

equation is

3m3
U, = =— e®sin(d -Ww)
1 h4



The complete solution is:

2
v=2 l +e cos(Pp-w) +§I-n—e¢sin(¢-w)
h2 h2

Assume this can be written

U = Ln-z- 1l +e cos(®-w- 5\»):1
h

2
where OW is very small and terms of order (éw)” can be neg-

lected
cos (& -w- §w) = cos(®-w) cos §w + sin(P -w) sin Sw
= cos(d-w) + 8w sin(Ph -w) i
Hence
Sw = 3-3:; o

While the planet moves through 1 revolution the perihelion

advances a fraction of a revolution equal to

from the equation of areas h2 = mQ = ma(l—ez)

Using Kepler's third law -



-7 -

2
" - (&

_\_ a
Sw _ 12%° a°
@ c2 T (l—e2)

The advance of perihelion of Mercury is significant and
the predicted value has been observed. However, one must be
extremely careful in fixing the precise cause of the advance
of perihelion. If the sun is sufficiently oblate the éravi—
tational field will have quadruple terms which will cause

advance of perihelion.

EXERCISE: Complete the advancement of perihelion of Mercury

due to the effect of Jupiter.

mass of Jupiter = 10—3@

dist. of Jupiter=4.5 A.U.

95



FURTHER CONSEQUENCES OF THE SCHWARZSCHILD SOLUTION

Trajectory of a light ravy.

Thus far we have not considered the question of how
electromagnetic radiation travels in the Riemannian space.
The nature of the trajectory of a light beam is not inherently
contained in our theory as it is presently constructed.
Additional postulates must be introduced analogously to the
postulate that non-zero mass particles travel along geodesics.

It is natural to make the same assumption about the path.
We postulate that light travels along geodesics in four

dimensional space time. That is:
2
(aT) = 0 . . (1)

It becomes immediately apparent that other assumptions
must be included if the nature of light propagation in the
general relativistic formalism should bear any relationship
to its nature in special relativity. In the case of the
latter, we know that the conséancy of the speed of light
results in the vanishing of the proper time interval traversed
by a light beam. That is

2

dT2 = - c2 dt2 + dx” = - 02 dt2 + c2 dt2 0

i.e., We are on the light cone.

i



11

We thus are led to a second postulate about the path

of a light beam
df =0 (2)

(1) and (2) thus, confine light trajectories to the
so-called "null geodesics", those paths whose proper time
dependence on the four coordinates is an extremum; and in
addition, have zero line dement along the path.

Our method of procedure is similar to that for material
particles. That is we seek paths for which

ld v &
J.[der = S(g,v%’f\- o) a4 =0

Where A is some parameter characterizing the path, in
the case not the path length, since that is zero.

We are thus led to the equations of motion

a [ax"¥ “axP ax¥
d_x(ai“)* Fﬁ*aa-'gar =0 (3)

A light ray in the Schwarzschild Field.

We will now consider the path of a light ray in the
empty region of a space for which there is a spherically
symmetric mass distribution at the origin. Solution of the

field equations then yields the Schwarzschild metric.



-3 -
2 am, 2 .2 om. "L . 2
d’t=—(l—-;-)c dt +(l—?) dr
where (4)
2 2 ., 2 2 GM
+ r°(a®” + sin“® ag );h = ;5

If we orient our axes so that the beam travels in the
[—10(
z = 0 plane, then 0’='§; and the calculation of the ,r
is identical to that demonstrated in the previous section
on the trajectory of Mercury around the sun. The equations
for the coordinates 1) and f’ are also formally identical to

those of that section:

r2¢ = h = const. (5)
(l - EE) ; = /[ = const. (6)

Here, the dots denote differentiation with respect to A .
Rather than use the Euler-La Grange equaticn for r , we
obtain a third independent equation by dividing the metric

(4) by O(/)" and setting dT"a

. -1 -
o=--(1--2—m)c22 (1-3‘-“ 2 4 2P 2
r X
er (7)
2792 -1 2 2
o=-°—-£—-[-n+(1-3£‘3) '+}-L2-'

9%
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The solution of this equation can be achieved by making

the substitution:

1
r = =
u
' 14
. u u ’ 2 /
r—-—2- == =au T ¢) =-u h
u u
where
d
Then (7) becomes
0 _c212 N u’ 2n? + 12 42
1-2mu 1-2mu
or
021?2 - h2 u'2 - h2 u2 (1 -~ 2mu) =0 (8)

Differentiation of (8) with respect to ¢ . gives the

equation for the trajectory <

- 2h2 u'u'' - h2 2uu' (1-2mu) + h2 u2 2mu' = 0
or
e 2
u'{u + 1 -3mu) =0 (9)
, u' =0
The solution 1 ‘} apparently does not
u = = const.

correspond to anything physical, and is discarded in favor

of solutions to the equation:



/60

u'' + u —3mu2 =0 (10)

This equation for the trajectory of a light ray can be
solved by a perturbation method when it is realized that the
term in u2 is much smaller than the term in u for typical

value of the radial coordinate. That is, say for the sun,

3mu2 _ 3m _ (3)cM
u T r T2
er
& (3) (7x10”°) (2x10%%) _ 5x10°cm
1021 r r
_ 5 km
r

Thus, outside the surface of the sum the term 3mu
can be treated as a perturbation. Then, writing 3m = € ,
we look for a solution of (1l0) good to first powers of the

parameter € , of the form

u($) =U_ + €V + O (e»)
"
Ut =u '+ €V

This trial solution in (10) gives

1 v 2
- V ==
U, ev + Ut € € (Uo +eV) . (11)



Equating the zero order terms in € gives

or
U, = A cos (¢ +§) (12)
or UO = A COS 5 after the substitution 5 = ¢+S , thus
rotating our axes about z .

This solution, good to zero order in € , corresponds
to

x = Pcos & = = const.

b ]
l

That is, in this approximation the ray travels a straight
line parallel to the y axis. Thus the effects of the sun's
presence are completely neglected. The—e

The effect of the sun's perturbation is found by equating

tferms linear in € , in (11)

<
+
<
i
a
i

-

where now the differentiation refers to the variable e .

The solution of (13) is easily found to be

v = g Az - = A2 coszf? (14)

A2 cos2§' (13)

16



Combining (12) and (14) we have the trajectory, to

first order in €=3M

U =2 cos8- ma> cos?® + 2ma’ (15)
This solution corresponds to the light beam approaching
the sun on a straight line, being deflected, and receding
again along a path which asymptotically approaches another
straight line.
The deflection of the ray is then measured by the angle
between these asymptotes, which can be obtained by setting
r = o in (15).
A cos@ - mA2 cosz'é‘ + ZmA2 =0 (16)
(16) has the solution
2.2 3
A 3 8m A
6 = — - .
cos 6mA{ 1 (1 + ) (17)

The other solution to (16) is discarded since it yields

cos & >1 .

To first order in the parameter 3m = € , this becomes

2 2

- 3 8 2 3 4en
_ 3 _ 8 ¢ _ 3 4en”

cos ¢ 2en(l 1+ 18 A) 5A 0 B

cos & = 2mA (18)
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The significance of the parameter A is realized if 6

is set to zero in (15) then

U(0) = A +mA2"§$A

This is the point of closest approach of the light ray

to the sun. That is

u(oe) = % = A

. . 6 »2m
where R is the distance at closest approach. Hence (0S
corresponds to the asymptotes of the trajectory.

By our previous estimate of m, it is realized that for-
typical values of R, we have

cos & %0
A = o
or € = + = '-'tg where S is small. Putting this
into (18) gives
=2
sin S X X - “"R
for either sign combination.

The overall deflection of a light beam, due to the
presence of a spherically symmetric mass distribution at
the origin is then

- m
A R (19)



As is well known, this result provides the basis for
one of the three experimental checks of General Relativity.
For the case of a light beam which just grazes the rim

of the sun, the deflection is

A= 46M - 175’
Re>

Measurements of this quantity for starlight just passing
the rim of the sun during an eclipse have yielded results
which seem to confirm this prediction. Measurements made
between 1919 and 1954 have fluctuated between 1.5" and 3"
with a median near the somewhat high value of 2.2". A
particularly accurate measurement made by Van Biesbroeck in

1952 yielded 1.7" + .1", in excellent agreement with theory.

Newtonian theory of the deflection of a particle by the sun.

It is interesting to compare the above analysis to the
Newtonian theory for the‘deflection of a particle by the sun.
The particle mass does not enter these equations.

Suppose the trajectory is close to a straight line
parallel to the y=axis and the point of closest approach is R.

Then the acceleration in the x-~direction is



losy

- 10 - j \* P(j.'
v = GMXx _ gMX y \
3 2 2 \
r (x*+y*) ‘
[
or R q‘ X
chq. - GMX " 20) I
(xlt7a.) /'
/
4

In (20), x'' refers to differentiation with respect
to y , and the particle is assumed to be travelling at a

velocity very close to ¢ , in which case

_ & _ ., dy :
X = i X It % x c

‘e

x % c2 x'!

A further approximation is made in which we assume x

is roughly equal to R for all y . Then

2 GMR
(xl)l G -
2 2.3/2
(y + R) /
Th
us xl Y
{ _  GMR dy
/dx = 2 f 2 _2.3h
Y [ © (Y + R )
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If there is a true minimum of the radial coordinate at

y = 0 , then X is zero at that point. BAn integration gives

x' = GM sin(taﬁd z)
2 R
¢ R

, GM GM
2

Y
c2R 6&2+ y2) k‘xc R

where the last step assumes we will only discuss the region

2 2
y »» R , or |[y|>»R .

Another integration yiélds:

GM
x(y) = 5—Y + R {(21)
c R

where we have used the fact that x(0) = R . Equation (21)
is the equation for the asymptotes to the trajectory at

large values of y .

These asymptotes have a slope gM . Thus the total
¢ R
deflection is
A= 2G6M
c*R

or exactly one-half that predicted by the General Relativity

theory for the trajectory of a light ray.
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A fourth test of General Relativity

Recently, Shapirol has determined, using the Schwarzs-
child metric, the transit time for a radar beam to traverse
the distance from the earth to one of the inner planets and
return. He concludes that the difference in elapsed time
between the cases when, first, the experiment is done when
the earth and target planet are situated so that the beam
passes close tothe sun, and second when the beam does not
pass close to the sun; is large enough to be measured.
Performing the experiment could provide a test of general
relativity. To illustrate this, we calculate the transit
time below.

It will be convenient to orient our axis as shown in

Figure 2. Y

Fyg. 2
EARTH Xe _Xp PlaneT

1 I. I. Shapiro, Phys. Rev. Ltr. ;3, 26, 789-91, Dec. 1964.
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Here we have considered the sun at the origin of
coordinates and the earth and the inner planet to be sepa-
rated by a distance Xq + xp . In what follows, the space -
time curvature due to the earth and planet will be neglected
compared to the much larger influence ot the sun. This allows
us to use the Schwarzschild line element. We further neglect
the small motions of the earth and planet.

A proper calculation at this point would involve first
calculating the null geodesic trajectory between the trans-
mitter and target, and then determining the transit time for
a radar beam to travel this path and return. Such a calcu-
lation, however, which is quite tedious, is found to differ
from the much simpler calculation for a radar beam which
traverses a direct path to the planet, only by a term of the

2
order of m2 =(ﬂ;)"’(5 km) . The length m is a small

c
guantity compared to the distances in this problem.

We will perform the simpler calculation here, which
will be accurate to terms of the order of m and includes
effects due to the warping of space time by the sun, but
not of the path deflection of the light beam.

The Schwarzschild metric, in spherical polar coordinates

is written as

-1
2 2..2

ar =—(l—g§-‘)cdt +(1--2r£‘) ar>

2
+ rz(de2 + sin & d¢2)

(2:
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In terms of the cartesian coordinates:

Xx = r sin @cos ¢
y = r sin®sin@
z = r cos¢

The Schwarzschild metric assumes the form

2

2mx . %, - . .
ar” = -(1 - %_f—n) c2ae? + (g + —=31 - %—n) dx”ax’ (24)

t
J =

Now, in the (x,y) plane, with y = d = const. as in
Figure (2) we have dz = dy = 0 and (24) considerably

simplifies to

2 =1
dT2 = =(1 - gr_n) czdt2 + (l - 2mx (1 - Z—IE) ) dx2
r r3 r

Furthermore, the radar beam travels the null geodesic,

dT2 = 0. Hence we obtain

for md r
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Thus, we obtain

ot

2
dt = (}=+ %? + 2mx ‘) dx

or

where, in taking the last step we have again employed the

fact that m¢<£ r.

Equation (25) can now be used to calculate the round

trip transit time

-Xe
*p
2 m m x* d
= o (/+ + T ) X
, dx
2 m ax
= & (xp+xe) + 2&"[ v

(25)
2 + d2
Xp
27 x olx
¢ r3
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Thus, the round trip transit time is given by

r +x X X
2
At = 2 (x +x)+££_n[,\(_9__£.)+3@(_e+_§) (26)
c jo) e c r-x c r r
e e P e

The significant measureable quantity, which would
provide a test of General Relativity would be the difference,
if any, between round trip transit times measured when the
earth and an inner planet are at orientation for which
calculated from (26) is at a maximum and minimum.

The three extreme relative positions are illustrated

in Figures (3 a,b,c)

Y 7
L=Xe 2
o Xe ___|% P L b7 Y
L d jib‘x
j%uh’ X suN

(W) (b)

‘% ()

(<)
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Figure (3a) is meant to represent the condition that
the earth and planet are almost at superior conjunction,
with the planet almost exactly on the opposite side of the

sun as the earth. In which case:

dagl x
e
d<d{ x
p
and (26) simplifies to
2
At X g(X»+xe)+l-1-f-n x;;
Xe
which gives
dx X
2 4m e p
Ataf‘\f : (xp + xe) + = (————-—dz ) (28a)

Inferior conjunction, when the planet is almost exactly
on a line between the sun and earth is pictured in Figure (3Db).

Here again
d L& X 9 xp

However, the sign of xp is now reversed and we obtain

for the transit time, from (27)
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2 4m e
At ~ 2 - + =m =
»” o (x «x ) S z (28b)
Finally, in Figure (3c) the planet as viewed from the
earth is furthest to the east (or west) of the sun, in this
case:
xp ~ 0
d &< x
e
These conditions can only be realized for Mercury since
dze= xe for Venus at elongation.
For Mercury, we get
2x
2 4m e 2m
= = + — —_— — 2
A tc c (xe) c d c (28¢c)
The first terms in each of 28a, 28b, and 28c are recognized
as the flat space transit times. When these are subtracted
we obtain the variations from flat space values given by
General Relativity. These are:
4 4x x
I
a c a
St - @A_e (29)
b c X

R
ﬁ
(o]
1}
I»D
1
>
’_\
N
QI b
[0]
+
N
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Theoretical calculations of Sta, gtb and J‘tc for

Mercury yield the result that

Xta Z1l.6 x 10"4 sec

Stb '.::Stc% 1ox 1074 sec.

Thus the close approach of the beam to the sun, in a,
considerably slows down the transit time. This departure
from flat space is outside experimental error of present
equipment. Thus Shapiro suggests that a measurement of Sta

would provide a test of general relativity.



STATIC INTERIOR SOLUTION

If the matter supports no transverse stresses and has no

mass motion, then its energy momentum tensor is given by

where P and § are respectively the pressure and energy
density measured in proper coordinates. If we write the most

general spherically symmetric static line element as

Ao Yo
as? = - ™ ar? - 2 a0 - 12 sin’e d)é2+e dt
Einstein's field equations reduce to
R 1
8NP = e (——+-—2§ ) (1)
r r r
_o =AY 1 1
8TWf = e k‘ - 3 ) + = (2)
r r r
¢ _ _ (P +P) \)’
dr 2

(primes denote differentiation

with respect to r)

These three equations together with the equation of state of
the material { = f’(P) determine the mechanical equilibrium

of the mass distribution as well as the dependence of the

g/Aﬂ' A on r.

(3)

s
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The boundary of the mass distribution is determined by
the conditions r = rb for P =0 and P>0 for r« r b -

For r>rb we have that P = P = 0 and Schwarzschild's exterior

solution gives

SMM_ L 2m W 2m
- R ' - R

where m 1is the total Newtonian mass of the matter as calcu-
lated by a distant observer.

Integrating equation (3) we obtain

Pan)
2 dP
Y () —‘)‘rb> - X 5+ p (F)
o
or
p(n)
Q(ﬂ) O(ﬂb) 2 4p
e = e exp - m) .
L]
Y(Ab) A
The constant e is determined by making e continuous
across the boundary. Then
P
eQ&M _ (l ) .2.5\ ‘\ exp _ S 2 dp
r, P+ f(P)
9
D\ ]
Thus e is known as a function of r if P is known as a

function of r. In equation (2) introduce the new variable
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U(r) = 1/2 r(l - e"‘) )

Then equation (2) becomes

av : 2
T = ATeE . (4)

Using this new variable and equation (3), equation (1) may

be written as

ar __P + P (P)

3
o - -—?TFEET(4WPr + U) (5)

These two equations form a system of two first-order
equations in U and P . Starting with some initial values
U = UO and P = PO at r = 0, the two equations are inte-
grated simultaneously to the value r = rb whexre P =0 .
Aln)

The value of U(r) at r = rb is determined by joining e

continuously across the boundary. We find that

U(rb) = 23 {} - e X(ﬂb) ]

Vv
= lh&(l - 1 - %E } =m .
oL b
Now consider the special case that f = constant.
Then the equation
U _ 4mwp v

dr
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is easily integrated and we have

W $ £+ e

(W
if
Wb

= 1/2 r (l—e’))

or

- 8Up 2

3 +

KiQ

In order that this solution be continuous across the boundary

- A(R *
we require that ¢ = 0. Then e ) =\ - (R/R\

WHhERE
R = ﬁ'/ [ewp

Equation (3) can be written as

_..d_P - E dO(r)
P+f 2
and its solution is
- Y2 V)
P + f = constant x e .

Substituting equations (1) and (2) into this expression we have

) SNy (_):_' . Y/

n o ) = constant

The solution of this equation can be written as

fL
e% b = A -B (1 - rz/Rz)%
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where A and B are constants.
Now we have that

2
2 2 2
ds” = -—q-f——z—rzde2 N QO dag

l—rz/R

2

+ [A - B (1—r2/R2)1/2] dt2

and
1
7

3B (1-r2/R*) - a
gufP =

\
3 T
R A - B (l—r2/R2) 2

The constants A and B may be determined byjoining these

equations to the exterior solutions at r =r ,

b
2 - ar? 2 2 2 2 2 2
as® = 5= - r (48 + sin“®@dag’) + (1 - & at
m r
1- = b
b
and
P = 0 .
We find that
3 2,2 g
_ _oar 3
B=1/2 , and m—~3—frb

and for the interior



e

- dr2 2

d52= >3 - T (d92+sinze dﬂz)
l1-r /R '

s (i) ] e

+ [3/2 (1—rb2/R2)
In order that the pressure remains finite and positive

we require that

Yo

2 2
A -B (l-r2/R ) 30 .
Since r 2 0 this reduces to
A-B 2
5
3 2,2 S
5 (1 rb /R7) -=-1/2 0
or
r 2
D 2 8
R2 9

The dependence of g,, on r is illustrated in the

following graph.

3“ 4+

guAvRATlc

> .

Ry
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Neutron Stars

Since the matter density of a neutron star is very high
("’10l6 gm/bm3), Oppenheimer and Volkoff (Phys. Rev. 55, 374
(1939)) have considered a model in which the equation of stage
is that of an ideal or degenerate Fermi gas at zero temperature.

In order to discuss this model we consider the equations
discussed above for the case of an ideal Fermi gas at zero
temperature. The relevant equations are

ap _ (P +.P)(U+4'ﬁ'r3f>) .
-— = - ) (5)

dr r2(l - 2 U/r)

du

dr

avelp . (6)

For an ideal Fermi gas we have

i
2 I+1 3
fo=== X*dp
h °
s
2 I +1 1 de .3
P = = o dp ,
h3 3 . dp
2 2 24%
€ = (po ¢ +m c¢) .

If we introduce the variable

x = Pf/me



these equations can be written as

If we now

we have

where

Thus we have

introduce another variable, t,

4 5
m c

%x(2 x2 --3)(x2 + 1)

4 5
m c

24 2 h

X

33 8X3 (x2+l)
247 h

%

%

+ 3 sin h™

sin h (t/Z)

@ =k (sin h t - t)'

P = % K (sin ht - 8 sin h t/2 + 3 t)/

1x}

i -
3 [x(Zx2 -3)(x2 +1)% 4+ 3 sin h 1 x}

such that

i
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If we substitute this equation of state into the expressions

obtained from the field equations (Egs. 4 and 5) we find that

du 2 .
S - 47 r K (sin h t - t)
at _ _ 4 sin h t - 2 sin h t/2
dr r(r-2U) cos h t - 4 cos h t/2 + 3

{.g‘ﬁ K r3 (sin ht - 8 sin h t/2 + 3t) + U ]

These equations are to be integrated from the values U = O,

t = to at r=0 tor = ry where tb = 0 (which makes P = 0)
and U = Ub.

The units which we have been using are such that ¢ =1
and G = 1 . This determines the unit of time and the unit of
length. This unit of length may now be fixed by redquiring that
K = 1/47T .

The new unit of length is

3
1 A e
@7 r {me N
(mG)
while the unit of mass is
2
G

For a neutron gas
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a=1.36 x 106 cm

b=1.83 x 1034 gm .

It is only possible to find analytical solutions to these

equations for to-e»o . Then the equations reduce to
au _ 1.2 ¢t
dr 2
and
3
dat  _ 4 (r t )
dr = r(r-20) ¢ U

g
a

which have solutions of the form
t 2
e- =3/7r° and U =3 r/l4

corresponding to the boundary conditions to = 0 and Uo = 0.
Oppenheimer and Volkoff (Phys. Rev. 55, 374 (1939)) have

integrated these equations numerically. Their results are

summarized in the plot of o™ oA, thmf’ te which follows.

m
o

5,

.3

‘ ™ £,
45° 50° ,
e 2,
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This shows that for this model no static solutions exist

for m > 3/4 ©.

Calculations using a more realistic equation of state

have been performed by B. K. Harrison (Phys. Rev. 137, Bl644

(1965)) .

figures.

The results he obtained are given in the following

(The results of some other calculations are also given

for comparison.)
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Supernova and Neutron Stars

For a star of central temperature about 109 OK, the 4
core is composed almost entirely ofvsizs. At this temperature
the neutrino processes become important and it is possible
for the star to dissipate enerqgy at the rate of lO15 erqg/
cm3-sec . Since very little energy is generated in the
transformation Si28-+ Fe56 at about 1-3 x lO9 OK , enerygy
can be supplied only by the gravitational contraction of
the core. The star can now either cool down to form a white
dwarf or undergo gravitational contraction. Contraction of
the core will increase the central density and temperature
and at about T = 6 x lO9 OK either the neutrino processes
or this transformation of Fe56 to He4 will cause insta-
bilities and collapse.

For a massive star (say M = 20 Mg ) to form a cold star
it is necessary that most of its matter is ejected during
the collapse of the core. This must occur because no cold
star can exist with a mass greater than about 1.4 Mg
(Chandrasekhar mass limit). For a star of mass M and
radius R contracting to a mass Mg and radius r , and
ejecting a mass of M - My, , the gravitational energy release

must be about

G (M2 ~ M)

R2
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This energy must be supplied by the contracting core, there-

fore

o

¢ (M - Mp) GMg

2
r

R

If M=20M, &and R = lO9 cm we find that r e Z%B .
thus the density of the core will be lO6 higher than that
of the star before collapse or about 10l3 gm/'cm3 which is
the density of a neutron star.

We can now apply the theory of an ideal Fermi gas to

this neutron star to find its thermal energy. The"specific

heat per unit mass is

1.

c - Tk KT x(x% + 1) °
v m 2 3
n m C b4

n
2 5
= .75 x 10 % §i§—§i;39
x

il

where x

5 and PF is the Fermi momentum for the neutron
mnc

gas. The thermal energy per unit mass is

-4 2 x(x2 + 1)7

= .38 x 10 3

X

For T = lO9 OK and x ~1 we have
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€ ~ 4 x lOl3 ergs/gm

Therefore the total thermal energy of a neutron star will
be about M xlO14 ~ lO47 ergs.

Neutron stars could be formed from the collapse of
massive stars with the release of a large alount of energy.
The only observed objects which emit this kind of energy are
supernova, and therefore, it is thought that neutron stars
are the results of supernova explosions. The temperature of

a neutron star as a function of the time after the supernova

is:




Within a short time after the supernova the main source
of energy release for the neutron star will be Y emission.

The total energy radiated per second will be

where Ts is the surface temperature, R is the radius of
the star, and %; is the Stefan-Boltzmann constant. For
R v 10 km and Tsv~107 OK we find that L w1038 erg/sec .

The lifetime will approximately be given by

Total energy _ 1047ergs
L

1038ergs/sec

= 109 sec
or about 100 years. But as T decreases, L also decreases,
so the lifetime can be expected to be much greater than 100
years.

Although the luminosity of neutron stars may be lO38
erg/sec, they would not be detectable from the earth due to
absorption in the atmosphere. Chiu (Annals of Physics, 26,
364 (1964)) estimates that the luminosity of an average
neutron star observed on earth would be about 10—6 Lo

(Lo v 1033 erg/sec). To be detectable, such an object
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would have to be almost inside the solar system. It should
be possible, however, to detect neutron stars from earth

satellites.



NON-STATIC SOLUTION OF THE FIELD EQUATIONS

We now consider the field equations for a distribution of

matter which is in motion. For the case of a perfect fluid

with no radistion present the energy-momentum tensor is

p
T,,@-_-_gd@p“pw)%% .

€= pct = p (C=1)
(see the section entitled Classical Field Theory, page 13.)
If we restrict ourselves to spherical symmetry, i.e., the

velocity at each point must be directed along the radius,

we have that

dx* ax %
I = a-é— = 0 for « =2, 3

where xl = r, x2 = 0 x3 =&, and x4 = t,

Using the spherically symmetric line element we had above,

A , )
as? = - ar® - 2 ae? - ?sin®e ag? +e’ at?

with

AN = XN (r, t)

and
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we have
—e 0 0 0
] -r2 0 0

g =
“¢ 0 0 S @® 0
v
0 0 0] e
and

Then the field equations can be written as follows:

8T¢ . 1 _ ~x[9' 1 1
—ah = e (z—*—z) 3
C r r
T
E}_%Tzz B Bl%T33 -
C C
/] / ‘1 4 ¢
_ _Q_'_H+\)+\)—x
2 Z ) 2T
- . " . *
L P A A
2 2 2
8vg 4 _  ~x [\ 1 1
2Ty = ° (?“5 3
C r r
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gic _ 4 VRS Y
_._4‘1'1 = e ? R
c

B
c

where the primes represent differentiation with respect to «r

and the dots differentiate with respect to t . We also have
1 dxl dxl
LT BrFP) mom P
2 3 _
4 dx4 dx4
T, TP & CF o
4 dxl dx4
L= B T o
1 dx4 dxl
Ty = BrP) T o
(-Ma 4
= - e Tl .

With P = 0 we have the free gravitational collapse
of matter. The general features of the solution obtained with

P =0 will apply even to the case that P # 0, provided the
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In order to solve the

mass is great enough to cause collapse.
problems we adopt a coordinate system which is comoving with

the matter and take a line element of the form,

R
WRT) (de2 + sinze dyfz) .

2

W{R,T)
a7 - e ¢ dR2 - e

d52 =

Because the coordinates are comoving with the matter and the

pressure is zero,

and all other components of the energy momentum tensor vanish.

In the comoving coordinates the field equations are:

b 2 (1)

l - —‘:‘ U)/.L . 3
= = - [sid w) - W
8 Tl 0 e e 7 + + g ,
2 3 -CJ % ¢V _/—w/
8T T, 8T T, 0 e ( A
.o ¢« Vv . Vv . (2)
+ (v} +_£3 w w w W
> 2 t = vt 7Tt 73 '
gt = 8TP = e o wy 3w 5w’
4 = e - (Ww+z%® - =)
. v ERR (3)
w w W
t =T =
- 4 P -‘—UJ’ . -
w 1 = —8‘“"1"1 = (0 = td—;—a_% + W (4)



with the primes and dots here representing differentiation with
respect to R and T respectively. Equation (4) has been
integrated by Tolman and he finds that the solution is
w w 1
e = Y W'n 2w (5)
2 . .
where £ (R) is a positive but otherwise arbitrary function
of R . We can find a sufficiently wide class of solutions

2
if we put £ (R) =1 .

Substituting equation (5) into equation (1) we have
. 3
w + - Ww = .
i 0 (6)

The solution of this equation is

ew = [F(R)‘t + G(R)] 4/3 (7)

where F and G are arbitrary functions of R. From

equations (3), (5) and (7) we find that

8up = (z +6/F)7F (T + e )t (8)

Wik

Substituting equation (5) into (2) also leads to equation (6),

13
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therefore equations (5), (7) and (8) are the solutions of the
field equations.

If we now choose G = R 3/2, then at T = 0 we have

0 )

FF' = 97 R2 f’( R, T

We now consider the particular case that (R, T = 0) is

constant and we have
7, R”, R < R

= o ., R > R.b

where Rb is the radius of the boundary of the mass distribution.

A particular solution of this equation is:

3 5 3/2
F = -3 r02 (R/Rb) / , R < R
_ 3 _ %
= "3 7% ! R 2 Ry
where
8T

ro = 3 . Rb = 2 M .

We now transform this solution into the stationary
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coordinates which have a line element of the form

2 2
ds2=--e>s drz—r2 (d92+sin26 d¢)+e‘) dt .
Therefore
w
e /n = (FT + G )2/3 = r
and
~u ~ D
M -y OkT ok «p
? B k% dyb
«p X X

where f‘—’(r,e,ﬂf,t) and x 2(R,®©,9,T). We find

that
g4t = e'\) = t -»tﬂ/ r”
-t a-1h,
all =_e')‘ =—(l—i‘2) '
qe - o = ‘E:.’E'-tl/r, ’

where the primes and dots still refer to differentiation with
respect to R and T respectively. Using the values of r, F,

and G given above we find:
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-8 -
-2/3
' ., 5 3/2 3 1/2]
t/t=rr" = - (rO R) [_R -5 I T , R > Rb
1/3
% -3/2 % -3/2
_— e S— t
o R By [l 3/2 x, Ry ] , RCR T
The general solution of this equation is
t =L (x) for R > Rb
. 2 L
with X = 1L (R3/2 - r3/2) - 2(rr)*
3 o
3 r
© L L
ri+r *
o
+r UAn Ty
2
r® - r_

t =M (y) for R<Rb

o

NI

with y = [R/sz—l} +

]
(o]
w

where L and M are arbitrary functions of x and vy

respectively.

For R >,Rb we have that

A

1
e

(1 -r /r )~

e = (1 - ro/r )

(These equations were derived above for the case of a static

mass distribution, but they also hold outside a non-static mass.



40

See Landau and Lifshitz, "The Classical Theory of Fields", p. 326.)

With these equations and the equation for FS** given above

it can be shown that
L (x) = t = x .

The requirement that L =M for all T , when R = Rb' gives

- _ 2 =% 3/2 3/2 3/2
t=M (y) = 3 r0 ( Rb o= rg vy )
1/ o
3 v2+ 1

- 2 ‘ .
ro v + ro Xn ;g—:—z

We now consider the asymptotic behavior of t. As y -1,
t -» @ and we can write for R < Rb'

.‘, ;i B
9 Ly T+ 1
n i e

t ~ox

t~o-rgfn(y-1) o

PV
35 T ey .r'%é LY = R
21
i
E=S
{

s, 1
H

R S T R 3
Thus t will be infinite for a finite value of T , T, ,

such that

N A A Sy g e s !
DLIGITE S8 X0 D8EsT 0T IOI

U A
CEEARN AT EorIon Gy snlml
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% 2/3
;(&)Z_éJrib(l_?’_E_@ C o
sz 2 r_ 3/2

> Ry

Therefore, after a time T AN observeR comoving with the
matter will be unable to send a light signal from the star; the
core within which a signal can escape has closed entirely. For

the sun r = 2.9 km , Rb = 10 cm and T ~ lO5 sec.
o o

It can also be shown that for large values of t,

e.>‘ ~ 1 - (R/Rb)2 {e_t/ro +
2 -1
e [3 - (R/R) ]}
} A- lt/ﬂo { - t/n.
e ~ e e +

3 [3 - (R/Rb)zl }

(See Oppenheimer and Snyder Phys. Rev. 56, 455 (1939) for more
details of the above discussion.)

It is also interesting to note that when

3/2 5

. 3/2
cene i [l 7))

r = [F To + G]2/3

H
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_ll....
3/2
Ao 4.3 % (_5)3/2 [2 B {1_
2 o Rb 2 roz
3/2 2/3

S
NI W
o
I
l_l
~N
N
—
o |
™

N
o lo"
o S
i
+
o
W
~N
N

_3 2% 1 %%
‘2Rb 2Rb3 ’
Thus we have that when R = R r=r, when T = T. .

The point at which an observer comoving with the matter cannot
send a light signal from the star, corresponds to the radius of
the star reaching the Schwarzschild singularity, r, . as

measured by a distant observer.

In this discussion we have neglected radiation in assuming

that
et <« ee”
or
T (< Tr
where



Some typical values of Tr

M/

10
10
10

10
lOlO

lo22

r

o]

2.96

2.96

2.96

2GM

C

2

(cm)

10
10

10

loll

l013

10

2
10 7

- 12 -

are:

(ro)(g/cm3)

1.84

lo16

12
10

108

lO4

10

10728

10

x 10

12

x 10

11

'x 10

10

x 10

x 10

x 10

x 10
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The Energy-Momentum Pseudo-Tensor

For flat space we have seen that the conservation laws
of mechanics are given by the equations

&T“\)

— = 0

KD

1)

where T"¥ is the energy momentum tensor. The natural gene-

ralization of this result to a curved space time is

T'“o y = O

3 )

which has been used in constructing the field equations. We
shall now investigate the conservation laws which are pre-
scribed by this generalization.

The contracted covariant derivative can be written out

to obtain

) h)
— . artr* - B sV me
‘ TR A Y R T “y =0
or
TM‘).\) LoodTny S L S S Je)
) 5‘;‘9 - My o oV M -

Introducting the tensor density
v

I‘T»‘)W

v

where g is the determinant of the metric tensor, and using
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the identities

g ————

["WG, = _a\ Qo -
p a3 -9
l
= —_ é— 1-3 |
-9 AxM
we can write
- o
a iy _ i Lp,
3 x" axd [y
_ { d 3:3 ]:/\) {
= pun—— + M _—
& 3y ax’ -3
~V
= — q S 4 T/,_o E:_&'.)_ ")(_3)
{~3 ax’ (-4)" axy
Now we can express the equation
)
an- i )] ) ol
- =
S ) wy Ve 2 Ty =0°
as )
e d Lu " T},,\) (-%) J (-9)
3w (9" o
o ] o
S T R L T AR
(-9 5 {9 =
The second and fourth terms cancel in the above expression and
5T -

y
B S
dad
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Since
« O $pup 3 d Jw
r = J 3“‘5 { -4 G B _ 9 4k
a 2 an’  oxm T

we obtain

AV D \ V )
Sl ST ) B 1 SO A Y T
anV v Ix 1 dp P
oL T gy,
1 M(b

This reduces to

53,

dyV

because

o T

As we are interested in obtaining conservation laws,

we would like to have an equation of the form
divergence of something = O.
This can be accomplished by writing

é_ "r v + ¥ v ) = 9
LG A
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where

@._?.:‘ = "%’- TCP aaMG

3 xV

Thus we have reduced our original equation
v -

) \J v
to the diveregence of (’K}, + tp ) equals zero. We are
still faced with the problem, however, of finding an expression
v

for 1#— . It can be shown (See Tolman, Relativity, Thermodynamics,

and Cosmology, p. 222) that

o \ { i(ﬁ”f?g)[‘\q:\)

<t

-
"
\

S o a

bLgp Oy v b Mwe ] oeoqy [FT g0
(r& rEo o F‘N)]*13;’\F§}'

L3
Thus ¥ b is not a tensor but it is defined in any coordinate

system by the above equation and may be called the energy-momentum

pseudo-tensor. Therefore the equation

1]

iv(T}f*%Po\ )
dx
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although not a tensor equation, is still covariant because

it will have the same form in all coordinate systems.
We now integrate this equation over the spatial volume,
2 3

atx'4b, c¢x°¢d, and esx " &f, for a fixed value

of the time x4. Then we have
£

d b
1] 5o e
dx*
e ¢ G

¢

A

Ay ax’*

b
§ { é.(2¢f+tﬁ‘ ¢ 9 (T; *t;)

O ——q

Carrying out some of the integrations on the right hand side

we have c 4 b 4 3
d S g X (T + x,f ) 4 dutdx
dxt D
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4
. v v — 1
For a flat space time g=-1, ty ~ 0, and 'I;_ - \F
and the above equations become
§ 4 ) 3
d SH Tt dd kT
Ant
€C°‘ \ ¢ b A ,
£ Ad \ 3 * 1
T Eeeee - L) e
= <
eC 3 e o

3 | v
_ SS [T } dx dx
P e
OQ.
These equations represent the conservation of energy and

momentum with

£ 4,
o, - HS LT VR A PO

¥
<

Pi = momentum, and P4=energy

Therefore for non-flat space time we write the energy and momentum as

£ 4 b
o= DL T (T80 a a e

4
where TP represents the energy and momentum density of the matter

and YP? that of the gravitational field.
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WEAK FIELD APPROXIMATION - GRAVITATIONAL WAVES

1. The Wave Equation

In this section we shall study the Einstein Field Equations
for the case in which the metric gﬂ.v differs from its
Galilean value 7”_» by quantities of order & ( €41 );
that is, we expand the metric 3'“,, about its Galilean values

as a series in & , viz.,

(1) 9y = Juv + € Rup + CLeM)

! @
where ,Zuv — C>| -1 -l

In raising (or lowering) an index of . we find

\etd
ey = 9§ ()= ’z"’“lév&»)%"?{“&u
@ = P e hy + 9

Thus to first order in & we may raise (or lower) indices

by using the Galilean metric Zup . Similarly contractions

may in the same approximation be expressed as

(9 2
) 6‘£ = 6{1{ - ?/?‘(é_ép( + [6)
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Quite generally, the once contracted Riemann Curvature tensor

may be written as

(4) v MY T

where the Christoffel symbols are defined by

_ 1. " _ |
(5) Tmap =59 [%x,v +g,“w g,m’.(]

Now since each Christoffel symbol is at least of order & ,
we may, in our linear approximation, drop products of two or

more of them. Accordingly we may write

r
6 R,y = T, - T
(6) wy = Ly~ Tauogy

In order to evaluate the once contracted curvature tensor, we
must first compute the Christoffel symbols to first order in & ,

and then their appropriate derivatives. Thus we find,
7 S =z (7”“...6#,”)[(7[“1'67{“),1, 1‘(‘7&5,4"'6{43,‘)'
MY 2

- (7'“",9( + é&vﬁ)]
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Using the fact that derivatives of %v vanish (since 7/“/ is

a constant metric) and keeping only first order terms we have
z)
— _ 1 g0 - + O(€
rev = €37 [‘Mﬂ”‘j{"‘fﬁ "4/0,”‘}

Hence differentiating

re.= £ 7“"‘[ 1{%3‘? * 1&0;/9" ""{“‘i“l”] (8)

MY z

Similarly,

I & e

[ 47 G + 4 =4 o]

[\ ]}

D1

Because of the symmetry gwd'= g“p— we can write the last

term as

and upon interchanging the roles of the dummy indices &« and O~
this becomes identical to the first term and thus cancels it.

Thus

lé 7W Koﬂ.}',u_

)"'J
<1
]
NI =
[Te]
g0
9

<
]
NI
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Differentiating with respect to the index VY

o = &
ey "{670’« ’€°‘°7/“>V = z¢ (% «Z,«,v £ A (9)

Au;v

Substituting (8) and (9) into the expression for %“v (6)
we have

-
Ruv= £ [0 Ky + Ay ue +h |

(10)

We can look at this approximation procedure from another
point of view: We are always free to transform away the
gravitational field at a given point P. (a point for which
I;:; = 0); having done this we can always look in an infini-
tesimal neighborhood of this point. In this neighborhood

the metric will differ only infinitesimally from the Galilean
values at the point under consideration. Thus by saying that
the difference ng —‘7&5 be small (of order & ) we have not
specified the coordinate system uniquely since any point in
the infinitesimal neighborhood of P will satisfy this condition
and since each point in this neighborhood defines a distinct
reference frame. In considering the above remarks it is

useful to bear in mind the analogous situation of a sphere

(curved surface) in 3 dimensions. At a given point P on a
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sphere we may always draw a tangent plane (flat surface) and
in an infinitesimal neighborhood of this point P the tangent
plane (flat surface) will differ infinitesimally from the
corresponding point on the surface of the sphere.

The upshot of all this is that since we haven't specified
our coordinate system uniquely we can (and indeed must) impose
four conditions on -gqp which of course must be compatible

with its being small. We impose the following conditions
o o _d§%
¢Jd -0 where ‘I/pg .ﬂﬁ 2 6 ﬁk (11)
B

Yet it is still possible that we have not uniquely specified
our coordinate system so we shall look at an arbit:ary
infinitesimal coordinate transformation and see whether the
restriction (1ll) does or does not leave us any freedom.

Consider the transformation
YK — of
ey X*= X+ ¢ (12)

where ¢°‘ is small (have dropped the smallness parameter
for convenience).

Under this transformation the metric transforms as
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w— v 3 M -S,l Y "‘Sv .)
Ty = B L5 o (¢ ): d)(;ézﬁﬂ ¢ e
= SM Ji@@»v"m‘ ) (m = g #ide

(13)

J:P = j«p - ¢agp"¢#:“
Z;&: A = Pop - e (14)

1)

Raising the index with '7
S
— S s __‘¢ )
'4% p = i?ﬁﬁ -¢¢ )P P
and upon contracting 8 and ?

A= £ - 2¢2,) (15)

Now if our coordinate condition is to be preserved under

such an infinitesimal transformation, then we must have

(16)

o L §% - oc"¢5 ®
T —38% a="An 186t On '
ol 29BH of
+ 378 45;))3)‘*
Thus assuming that the coordinate condition is invariant to

such a transformation (i.e., holds in both systems) we have
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or finally

a] ¢P =0 (17)

with respectlo

Thus our coordinate specification is invariant A - group
of infinitesimal transformations generated by anyvector
solution of the wave equation. Thus we have found that the
persistence of our coordinate condition under an infinitesimal
transformation leaves us yet some freedom in a choice of
coordinate system and hence does not uniquely specify it.

We shall look further into the physical meaning of this
coordinate condition and the freedom which it allows in the
next section. For now we will show that our coordinate

condition implies that the last three texms in the expression

for Ryy vanish, and that the linearized Einstein equations
result in a wave equation with the energy momentum tensor

as its source. The last three terms in 3/‘” Egn. (10) are

[ -
MY T + % VM Zo'd
Using the coordinate conditions :; o= -2]3 JO;L K)"‘
v )

the above becomes

156
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1 ¢T o
+3 950 Aoy v 285 Agu =Ry

l ﬁﬁv + Z:% V 'Avﬁhl’ =0
Thus R,&W becomes
1 4, T
Rﬂv = - 5’2 'ﬂﬂ]’,vl'b( = _ }.' a ‘Aﬂv
or
Ry = %7(3# Y7 A
and
==."-L fd[£)A IU;OL
SINEE I i e t
=-404
Thus

Finally Einstein's field equations become
1 - \.: B {
-3 Elé&pﬂ %L?Vﬂfﬂ

— =76
Q ”W"i"ﬂﬂ"‘“ = c+ T (18)
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2. The Physical Meaning of Coordinate Conditions - Weyl Solutions

We know in general that Einstein's equations are essentially '
six equations for ten unknowns and that this presents no con-
ceptual problem inasmuch as one could not expect the equations
of physics to specify the coordinate system. In other words,
since the field equations are specifically made covariant, that
is, independent of our choice of coordinates, we could hardly
expect the equations to tell us which coordinates to use. Thus
we are allowed, and indeed forced to impose four arbitrary
conditions upon the field equations and thus pick our coordinate
system. This is very analogous to the situation in Electro-
dynamics which occurs when solving Maxwell's field equations.
For in electrodynamics the E and H ( or A and ¢ ) fields
depend upon our frame of reference (in the same way that IwB
does above). What one doces is to pick a frame for which there
is a definite relation between E and H (or A and¢ ) i.e.,
choosing a guage (coordinate conditions) and one finds again
an arbitrariness in that there existsa group of transformations

- > . \ .
which leave the E and H fields in the same relatidn to one

another}. Vl3)

Aﬁ"? ﬁf’=; ;T‘F VA
d—>q¢=¢g-—£ 24 (19)
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Now if A,? are such that they satisfy the guage condition
6,X+.é 3?,,, O Wwe see that the persistence of this condition

RIUWE
for an arbitrary infinitesimal transformation ¥ that

& D 3% a 2 ___!.—_D:A - o
.A’-r-é-%{?’-: VA f‘c‘,"';% +V g kg
=0

or

TIN=O0 (20)

and we see that we have the same additional freedom in our

choice of guage as we did in our choice of coordinate conditions.

- > []
That is, by picking the Lorentz guage WA +T £ there
still remains an arbitrariness to within a 5‘“1 r solution

of the wave equation (in gravitational case there was a vector
solution of the wave equation). Thus we see that there is a
direct analogy between the electromagnetic and gravitational
wave equations.

Now the most obvious choice of coordinate conditions are
those for which the Einstein equations take on their simplest
mathematical form, but this is not of necessity the most
physically meaningful form. The remainder of this section
will be devoted to showing that in the case we are considering,

the inhomogeneous wave equation obtained by using our particular
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coordinate conditions is indeed the most physical choice. 1In

*

what follows we consider only the free field equations
v = 0 (21)

Before we imposed our coordinate conditions the Einstein

tensor had the form
S A N O A ]
Rﬂv = z /“)V,T v'ﬂ’q— /‘I’Sd- M
= $-Dh + Wy + A g Ar]

= %[—U £,uv + (",‘f;‘)"—{";f‘)”i-{"qr—?"",b

v)l/‘] (22)

Define

™, = (‘/\r‘ﬂ,o"' -2 ‘1") (23)

so that the field equations R/‘y = 0 can be written
E]vk,uv = TuwtTym (24)

Now let Py be the source for a wave equation involving

an arbitrary function

Q¢ = ™ (25)

160
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gubstituting this back into (24) we obtain

Dhw = O duy+ Oy (26)

This last equation suggests that a possible solution is

",«.v = Q‘A,v + ¢v,.,4~ (27)

where it must be emphasized that é‘. is arbitrary. To see

if this is actually a possible solution we must substitute

this back into the wave quation 3#(7 =0 i.e.,

’D‘qf“' + £q;4:‘°7” +‘£V;’)Vf/“" My = ©

or

o v =0
Dby + $umy t b ot et B 2 0O

The three underlined terms cancel one another and we are left

with
g O ]
"D*’\,uv"" ¢M) a‘rﬂl+ 4-” i M ©
¢ — =
""E'A,w? + 4/*,»7, Y ¢V,/A) , T O

~Thuy + BDlGup+ &) =

N

N
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but by (26) the braced term is exactly [} so that
_ 4%/&2)

h,y = 4 + ¢v is a solution. This general class of

My T TP Y g

solutions generated by the four arbitrary functions géu-are

called Weyl solutions and we denote them by a superscript ).

Now if we take any given solution of the linear equations —{L4y

T

we can always construct the functions ’;;4."'"‘ ‘K y ol "‘%_“//L

and can associate functions ¢ with the T via U¢ = 2"
7™ M M= e

Thus we have constructed new functions 9¢u_ from a g{ven

solution to the linear field equations which can in turn be

used to generate a new solu’ion of the field equations, viz.
) ¢5 f{
A MY 7yt Py M (28)

the associated Weyl solutions.
Since we are dealing with linear equations, the sum

(or the difference) of any two solutions is again a solution;

thus we have another solution
A 14 @)
'A,av = ‘/u.v LD (29)
Thus given a solution to the linearized field equations one
can construct uniquely an associated Weyl solution and their

difference is also a unique solution.

Note that the given solution 4§¢t) satisfies Egn. (24)
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and that the associated Weyl solution satisfies Egn. (26).

Thus their difference satisfies

U ‘Z‘HV = O (30)

or formally we could write it as
A A A
Qhw = Tyt Z~1),,«- =0 (31)

Only this difference solution will turn out to have physical
significance. Note that it satisfies a homogeneous wave
equation and propagates with the velocity of light C. The
reason for writing Egn. (31) down is that formally #here is
always a function ii;associated with JCLy , and in addition
one can show that if this function {;* satisfies the condition
imposed upon it by (31) and if it is also regular everywhere
and vanishes at infinity in an asymptotically pseudo&ycl&ﬁﬂln

space then '&:O. Thus Egn (31) reduces to the system of

equations

A |
OAw =0
~ - (32)
PL - o
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which is just the homogeneous wave equation and the associated

.

coordinate condition Egn. (l11). Thus we can identify
A L 145' N | 14
P = — -— 33
0 = M= AR = AR T Ty M (33)

Now we are in a position to justify why we have S?ﬁf that only
the difference solution, i.e., -2/,(;) - ’4‘0’ "Aﬂ)’)
is physically significant. 1In order to do this we must first
understand what the physically significant quantity is.
Since the wave phenomena wr: are considering is that of a
metric wave, and since the metric determines the structure of
the space it is natural to look at the full Riemann Tensor
which determines whether or not the space is flat. (Recall that
the vanishing of the full Riemann curvature tensor is a
necessary and sufficient condition for the space to be flat.)
If the space is flat there is no sense in talking about
gravitational waves since gravitation is ascribed the property
of curving the space. The full Riemann curvature tensor is

' = % T + 1% Té% __;1;3 TA;;' (34)

ﬁé?é = lagy =0 T A0

In the linear approximation products of two or more Christoffel

symbols may be dropped and we have
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s

s = £ 17" Lo hons ~Roaidia T ong-hirHonils

= é{ Td U‘»)S,p,x + *’}sqa,r 43?{@,5 '455,4,2:] Z (35)

A Weyl solution has the form

£?; = ¢°‘Iﬁ t ¢kﬁ°‘

Thus substituting this into the above

— € o o
KO(QTé -7 { lsyﬁ,b' + 46 ! 18 Y

+ st Brp'is
ol [}
~ 4555 — B p)S

._4,#'5#’, _¢5'6»°",{ =0

4

Thus the Weyl solution corresponds to a m// Riemann

tensor (in first order) and thus to a flat space. Therefore

the Riemann tensor depends only on ._2,(5 . The Weyl solution

seems to be purely formal and indeed can be transformed away

by proper choice of coordinate system. Recall that upon

making a transformation of the type (11) X%= X°<+¢°<

(36)

(37)
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we found that the transformed metric ;Z;ﬁ differed from the
original metric '&,& by a Weyl type solution ¢d,,5+ 4,9}(
(see Egqn. 14). Hence the influence of the arbitrariness of
the coordinate system due to the freedom in choosing the
(guage) function Qé‘ is to add a Weyl-type solution to 7€;#3
and conversely one can eliminate the Weyl part of a solution
ﬂeﬂﬁ by a simple coordinate transformation. In fact if

44 igﬂQ> . 1 1 luti

o(p_.._- ol (i.e., purely Weyl-type solution), one can
easily go to a system where ‘Ao(ﬁ = 720(5 i.e., a pseudo~
Eucledian space. This is in accord with the vanishing of the
Riemann tensor for the Weyl solution and and its corresponding
to flat space and thus no gravitational field. Thus we have
shown that Egns. (32) represent the meaningful solutions.
A .
Note that the condition ?&: O introduces relations among
A

the 44&& in the same way that for instance the Coulomb guage

'V‘.A' = 0 introduces relations among the components of

- m
. : . kA =0

the vector potential in electrodynamics, e.qg.,

i.e., polarization effects; a similar "polarization" effect

occurs in gravitational waves due to the coordinate condition

on Hup -
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Cosmology -~ Static Models

It is our aim in this section to apply the equations of
general relativity to the universe as a whole and to use these
results together with other assumptions to construct models of
our universe. Then, by comparing the predictions of these models
with observations, we will be able to determine which of these
models, if any, actually corresponds to our universe.

In the discussion of static cosmology the most important
observational facts are the following:

1) density - the observable matter in the universe

gives =7 x 10-31 gm/cm3 ,

2) red shift - distance relation - Hubble has found that
a linear relation exists between the observed red shift

of a source and the distance to the source.

We will show in this section that none of the static models
are able to predict these observational results.

In obtaining a cosmological line element we shall assume that
the universe is homogeneous and isotropic and neglect local
irregularities in the gravitational field. Hence we take the line

element in the general spherically symmetrical static form

v
4o = -~e’ ant - prdet - atswmte dfte eV 4t
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with X\ and 3 functions of ft alone. Also if we assume that
the universe is filled with a perfect fluid with pressure %,

and density ¢.o , the field equations become

(8 nt
- A /
_ N 4 - A
¢t ?oc c [ -f—b_ o } + At
AR fot Py
an L

where the primes refer to differentiation with respect to A and
/\ is the cosmological constant. (See Tolman, Relativity,
Thermodynamics and Cosmology, p. 242.)

We can now obtain the only possibilities for a sfatic
homogeneous and isotropic model, by imposing the following con-
ditions on the above éequations. First that the pressure
as measured by a local observer shall be the same everywhere,
because of the assumed homogeneity of the model; secondly, that
the proper density ¢s0o shall everywhere be the same, again
owing to the homogeneity of the model; and thirdly that the line
element shall reduce to special relativity for small values of r,

A=V = © , owing to the known validity of the special theory

of relativity for a limited space-time region.



Since P, must be independent of space coordinates, we have

4o
daun
or
P°°+?° \)/ - (o}
1

This leads to three possibilities

R and Peat P, = O

I. The Einstein Universe

1) The line element.

The Einstein line element arises from choosing

Integrating this equation, and keeping condition three in mind

(V= o as oL = o ), we obtain
V= 0O

Then
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-4 -
-2
T P, = € - 4 + N ]
Lt Rt
or
1
e~ « | - (N- 8T R 0.
If we define R as
|
(A -gT®) = /R
the Einstein line element can be written as
A " i R A
st = L _ v doe’ -t suete dg T o+ dt
(- M/

2) The geometry.

With the line element given above we can find the volume

of the Einstein universe to be

T
A Sam@ drndedg

<

[
0 — R
0 >

Om:\
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The spatial geometry defined by this volume and the line element

as® = S SATdeY - b an e dg Y o+ At

V- R ’

is called elliptical.
The geometry can be interprted somewhat differently if we

introduce new coordinates. Consider the transformation

2' - Q s\"n‘/g‘\-

where

2.+ 2: + 2; ¥ 2: = R

In terms of these coordinates the line element has the form

d52= - dir*rdi: +d2; *0\2:) ¥ O\tm

and we may consider the spatial part of the Einstein universe
as the three-dimensional spherical surface 25+ 24 4 2; + i: = RY

embedded in the four-dimensional Euclidean space ( 2., 2., 23) 24).

Introducing polar coordinates on the sphere



11

as® = - RV déY 1 'Y de’ + pwm ¢ S.uwvedy“)’fdf?

Each point on the sphere corresponds to one set of values

( W,e‘ @ ), in the intervals

The volume of the Einstein universe in terms of these new

coordinates is

[
-3
=

.o}

w
ak———'_)q
£
£~
o
-~

\l
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Thus the volume in this so-called spherical space is twice that

in the elliptical space. This comes from the fact that
r = R Sin # ?

which shows that the elliptical space covers only the hemisphere

o« Y% £ T/ . In the elliptical space antipodal points

on the sphere are counted as one point.

We can easily calculate the distance around the universe

in terms of the Z's. If we consider motion only in the 2Z_-2Z

1 2
plane, we have

2(1— + Z'L < Q»)

%.dz‘ = e 21 d%l)
and

ds* = dz, ¢ d i,

The element of arc length can be reduced to

ds Rdza
J R* - 2+

and then the distance around the universe is given by

L s 4 as

S,



174

t
D
)

——
(o}
~

@
4 R Suw-‘ 'K/R\

2T R

\

The distance around the universe in the case of elliptical

geometry will be half this value.

3) Density and Pressure.

We have found that

e N = \“nv/f“)

where
\ v
(A -guP,) = /",
Introducing this into the equation

.\vx
$T € = © [L-L] L oA
. o (e

we obtain
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9 -
§T Poo = B
ne

- 3 -
= /@ AN
If we solve for R and A in terms of feo and P, , we find

N o= 4T ( eeo+3‘p°)

yR"‘ = 4’”(?00‘\' ?o) .

Therefore, since ?oe and :)e are positive quantities, we
conclude that A and RY are both positive. We regard A and

R

fluid used to fill our model.

Y as adjustable parameters which depend on the nature of the

If we consider our model as filled with matter exerting no

pressure, we have

u

47 Coe = N VR‘L‘

which for €., ~v 1073t gm/cm3 gives A ~ 107°8 cm 2. on the

other hand if we took the model as filled with radiation

fao = 3 P

and
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Finally, if we take

§
)
]

11}
o)

oo

we have

A = /@* = o

and the Einstein universe would degenerate into the flat space
time of special relativity.

It should be noted that, in order for the Einstein universe
to contain any matter, it is necessary that /\ be non-zero and
R be positive corresponding to a spatially closed universe of

finite spatial volume.

4) Particles and light rays.
The motion of a free particle in the gravitational field

corresponding to the Einstein universe is given by the geodesic

equation
v o o p Y
Lx 'A(sz kT dk = O
ds* ds ds

where the M5 are determined from the line element. Since
we are considering a static model, we would hope that the
particles of the model would be at rest with respect to the

spatial coordinates. If we consider particles with zero spatial
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velocity,

i

—— -

du_@_cﬂﬁ o
ds ds

the equations of motion reduce to

Upon calculating the Christoffel symbols and substituting them

into the above expression we find that

d'n _ d'e _ 4P _ o
ds*t ds' ds*

Thus particles at rest would remain at rest and the Einstein
model could be expected to persist in the assumed static state.
The velocity of light can be determined by setting ds = O,

for motion in the radial direction we have

@ < t \o- a}QLl
dt X

In order to calculate the time it would take for a light signal
to travel around the universe, we use the coordinates (2”2‘123 7, )
1

introduced above and find

N L " I3
dt2 — d24 + d?—'l— + dis + Q\%q.
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If we adjust the coordinates so that the motion only takes place

in the Zl—Z2 plane, we have

2\-(- 2‘_1’ = Q"‘
2|d%1 = - 2. d‘zt
and
dt = ld‘%r“' d%:
Then
R e
t = 4 X } 22 ¥ 0\ d Za
e
Q

n
H
_~

RN

{Q
o~
<

2T R

i

We now investigate the possibility of a red shift in the

Einstein model. Consider an observer at the origin of coordinates



r = 0 abd a siyrce at r = r, then a light signal leaving the

source at a time tl will arrive at the observer at t2 .

N
di

= +
L ty X m?
Q

-1, v R s [ Y)

Hence, since r 1is constant, the internal dt+ between the
reception of two successive wave crests would be‘equal to the

internal &t: between their emission
éfl = 6f!

But according to the line element, the quantity t is the proper
time for both the source and the observer, and therefore, since
the period of the light would be the same at r = 0 ana r =r,
there is no red shift. We can conclude that there would be no
systematic connection between observed wave length and the dis-
tance from the observer to the source. There could however be
small Doppler effects due to the individual motions of the

sources.

IIX. The de Sitter Universe

1) The line element
The de Sitter universe is characterized by the condition

that



{§o

But, since

N / ’
§T (fog + Po) = € D+ X

this condition reduces to

The solution which reduces to special relativity at r = 0 is

PEDN , \
T P, = € {_"_--—]ar.‘——/\
rn (10 n"
or
-\ ' -\
(¢ Poo + N ) o ~ | = € A XN - e
The solution is
3 - A
(?'ﬁ?°°+/\) L -6 = -NEe + R
3
or

- A /\‘\‘ ?nPuo v
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A
where a 1is the constant of integration. Again requiring that

e‘x._e \ as il 20 , we put A =0 and obtain

S b ‘ - A+i“ ﬁoo }L".

If we introduce the constant R such that

AN+ §7 P |
3 R

the line element becomes

4s> - - —dn 4o - site d¢
RS
4 (\ - ’LV/Q‘V) dtv ..

2) The geometry

By the substitution

R:QS&;\/\,?‘

we obtain
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Another form may be obtained by using the transformation

o L SwmB Lo $

@-wsJLMe S &

¥= f oo S+ e = QQ*/R(\_RVRL)V%
S-e . e P (v-w/e)
Then
ds* = - dd* - dp*-d¥ - 38 4 de”
with
A A R A A v

This gives a spatially closed model provided R is positive
and finite. We can embed the whole of space-time in a five-

dimensional Euclidean space by using the transformation

2,"&0() 2\/:»\.@)233*2(,24:&8) 2’5:6]
which gives
~ ™ 1
as* = d2, + d#. + d¥y o+ dt, 4 dag
and
A
ZI" + 7. + T ;
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Finally, introducing the new variables

rn - t/e

A= e
(V- V)
and
t = t + /iR Q”ﬁ (¢- W/QL> ’
we have
Z{/Q - 1 - ~ 1 - 1
ds* = - ¢& (di* + A'de” + " s @ dg*) +dt

This can be written as

2kt _ v
as”¥ = - e (dr + a~ de™ + ¥ s’ dg¢ ) +dt

where

k= Ya.

This is a non-static form of the de Sitter line element and is
useful in discussing the relation between red shift and distance.

(See Tolman p. 356.)

3) Absence of matter and radiation.

The de Sitter universe is characterized by

?00 + po < o

The proper matter density $eo is by definition either zero

or a positive quantity and P. must be non-negative if the
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model is to be stable against collapse. Thus we have

or

Therefore the de Sitter model can be regarded as spatially
closed if the cosmological constant is positive, as degenerating
into the open flat space-time of special relativity if the
cosmological constant is equal to zero, and as spatially open

but curved if the cosmological constant should be negative.

4) Particles and light rays.
The motion of test particles and light rays is governed by

the equations for a geodesic

él“ t rld,‘ .C.;__b-‘-s _d___)"_y - o)
as” b S 45

d
Substituting the values for (O as determined from the line

pY

element we find

L .A@.)” -M'*@i)

A

Q-
>

d

V)

:O)

J- A
e dv QE‘_JE )m
dn das

ol

184
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CE_¢ ¢ 2 dv dB L g et oo do d ¢ o
45" n ds ds ds ds

dat . &Y de dt | o

ds” dn  ds  ds

If we choose the coordinates such that the motion of interest is

initially in the plane ® : Y94 W , then according to the second

of the above equations the motion will remain permanently in that
plane and the equations will reduce to

v - A v
d ) (c_i_&z\ _poe (dj}

27 4y \ds ds




ds? 5—5 ;\/S ]
(i”*, + ‘%Jg S&E poA
da? ds ds

Integrating these equations we obtain

as

E)\'%g\x % nvaéfwt-eo (df

TN
as “
dt | g e'o
ds

where h and k

for N and 9 according to

we find that

dn Ku‘-x+£-ﬁ+
ds § "

are constants of integration.

Substituting

186
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do h
4s 1

ds V- DR

From the first two of these equations we find the equations for

the orbit of a particle

L

[¢]

#

W dn + 5150

]\“’( n’?a‘u + hv-— I/ "‘%\} + V\?RV)I/”
Lo

According to Newtonian mechanics the orbit of a particle in a

potential given as Vend as

RS

. 2
v tme  amVD V)V"
" ( 1" l"’ /ﬂ'

o

where m is the mass of the particle, E its energy and R

the angular momentum. (See Goldstein, Classical Mechanics, p. 73)

Thus in the de Sitter model we have that V(r) is proportional

to -r2 and therefore the force acting on a particle is propor-
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tional to r.

The trajectory of a light ray is characterized by the

condition that ds = 0. Since this introduces infinities in the

geodesic equation, we write
ds: @dd

and consider the limit as @-ﬁ O . Substituting the above

expression into the first integrals of the geodesic equation we

find
)\ d‘b\‘\, v d v \) oy
< < MR ——-\ + € QE j = O
( dao ( d (<id. * G

ap . kb
do R
dt . swe)
— B
d«

Now as @ - O we must have that

) A/(5
and

R — e’/(5.



where A

will remain finite.

we find that

di
dd

or

o

ag

If we now consider

Liwm

-0

d¢ -

or

df

where

¢ =

and B
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are constants. This insures that

J¢
dd

at

e

44

omd
Solving the above equations for

LY

(@th‘ﬁ " MV _~@+§£'

“

i}

n RV R
dn
I T T ,_w,_.)/
WY Y RY Bh ph R

the limit p-» 0 ( ds =0 ) ,  we have

dn
S (L __(’_*_(L"f)%’
AY n R™ AY A*RY
d
i v \ L 71’
nle- T R"\

Redefining the constant ( we have
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an

L (C‘“'v_ ‘\l/‘\«-

= SwT B, =D
where b 1s defined as yﬁf . Thus
Som (4 +D) = O

and

S ¢ Len D Coo ¢ San D = b/s\a

/

or

N $ 4 A T D e b/ ten?

Hence light rays travel in straight lines in the de Sitter
universe.

Let us now turn to a discussion of the red shift in the
de Sitter universe. For the case of purely radial motion the

velocity of light can be determined from the line element to be

dv ¥ Lo~ AT

—n

dt B RY ©

Thus light leaving a particle located at r at time t1 would

1906
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arrive at the origin at time t given by

orxr

£, t. o+ R Q,c,% (%ﬁ__{:}\

Note that it would take an infinite amount of time for light to

I

travel from. r R to the origin. Thus no information could be
obtained from the region r ; R and R could be called the dis-
tance to the horizon of the universe.

The time interval & t» Dbetween the reception of two
successive wave crests would be related to the time interval
between their emission by the equation

_ \ ds St
é).t'\, - {\ + (-“'V/R' d-t

where dr/dt 1is the radial velocity of the particle at the
time of emission. The relation between &t: and the proper
time interval for an observer on the moving particle can be
determined from the equation

gt k.
ds L= /Y

i
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Thus we have

= A
{ /R é't,

St, -

and for the observer at the origin

é-l-_,: = CS't‘L .

If A is the wave length of the light emitted from the moving
particle, the wave length observed at the origin, Ay S .

is given by

AL e
é,to' éti‘
or
A+ S ) §¢7 ‘ St.
A XN AN St
R
l dn
_ Pt L -0 dt
) N A A
R
. R + ..__——-_L__ dn
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Since %k must be positive for a <R , the de Sitter model
allows for both red and violet shifts, but it favors red shifts.
It is possible, by the introduction of an additional
hypothesis, to obtain a linear relation between the red shift
and distance (see Tolman, p. 356), but the de Sitter model is

still unsatisfactory because it corresponds to an empty universe.

ITTI. The line element of special relativity.

If we choose the third of the possibilities which lead to

a zero pressure gradient,

0/ = O Omnd ?oe ¥ ?o = O {

the field equations require that

/

3= - %

This, together with the condition that Y aud A approach one

as r goes to zero, leads to the result

and the line element

ds’ S - wrde¥ - e @ dF Y o+ dtT,

This line element corresponds to the flat space of special

relativity.



NON-STATIC COSMOLOGY

A. Investigation of line elements.

One of course assumes spatial isotropy. One also chooses
to consider, for convenience, a co-moving coordinate system.
This is a system in which all components of velocity are zero.

The most general line element in co-moving coordinates which

is spatially isotropic is:
* 4t _ PFAS + P50 af) 4+ € d¥ 4 2adrd
dsr= - ot - F(FadT s EsO o)+ Sadidadrae )

At this point we would like to simplify this expression
without changing the co-moving character of our coordinates.
In particular we would like to reduce the unknown functions

>\,}L;9 to manageable proportions and eliminate the cross

term drdt.

Since our coordinates are co-moving

_4-‘—'-:: 9.9 :9—@ ::O
ds as ds

because all components of velocity are zero. Substitute a new

time-like variable t'

dt' = ﬂlQJ&ir A eyckt)

where M_ is an integrating factor chosen to make the right side
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a perfect differential. Then
't &
e dtl 4+ 2o dr dt ‘;\Te" - ”;G dv*

Substituting into Eg. (1) and dropping the prime

4s2 = — e/\ Ay — e)*(\(?- 3 + Y am© dn\)z') v e”de”
where >\)¢ and Vv are now functions of r and t . Notice
that the coordinates $,€%Cb haven't been changed so we still
have a co-moving system.

Consider now the components of the gravitational accelera-
tion for a free test particle., These are determined from the

. . . . . b
geodesic equation. For co-moving coordinates dr . do . & ’C))

Qs T X gs

the geodesic equations become

d5 ‘“ﬁ | 95)1
duSL T 44 ads

d‘o 2L dkyt
ds® 44 o\s‘\)

d'® | 1 3 et
dsl 44 d5>

115
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However, our test particle is at rest with respect to an
observer in a co-moving coordinate system. The assumption of
spatial isotropy insures the physical results that are observed
are independent of direction. Hence these accelerations are all
zero.

Hence
= = = o
Y_144 (’T14 44

. dt . .
since 35 1is not in general zero.

Earlier in the notes it has been shown that

v _ ____l_ vy ’59»}*
r}*}* z >

For the line element we have chosen

e% 0] 0 0

0 ePr> 0 0
g = .

0 0 eprgémg 0

0 0 0 eV

s0

NAY ! DY
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-4 -
2 | -+ Po) Bv
_ . L ) » oy
P44 o 2 Y3 T 3 =0
3 _ ! BV o \Le_-?_}’_ - QX _,_
‘"144 =0 = - e v s ad>:§> 0

Thus Yy can only be a function of t This knowledge permits

us to introduce a new time variable

without altering the co-moving character of the coordinates.

Then

gat = - et dr* - M (¥Tee s e ad®) * dt?

From our assumption of spatial isotropy and our chcice of
co-moving coordinates we have obtained a separation of space-
time into space and a universal time orthogonal to this space.

According to this form of the line element

is now the proper time as measured by a local observer at rest

with respect to matter in his neighborhood. The proper distances
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along the coordinate axes are:

\
N %

% Mo
SQ‘: e 6\,. 6&2 - elp\e PN 893 e Ys\nd gcp

The fractional rate of change of these proper distances

with time is

N A - L S I - U S N1 *3 B 'Y
$¢ ov, 2ot 8%, ok | 2d} 8 ¥ R ot

The assumption of spatial isotropy now implies

|
35

= 9B
ot

This result indicates a new transformation which can simplify
the line element without altering the co-moving character of

the coordinates

’\
, (=)
dr’ _ Z dr
. _

Dropping primes the line element becomes:

g<t = —eP (ot + e s ¥em@ ol ) + !
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Consider again the fractional rate of change of the proper

distance between neighboring particles of this model

_1 () 01
S0 20t 2%%

From considerations of spatial isotropy this quantity should be
independent of r . Otherwise one could study the entire structure

of the galaxy from this model.

E_,&:O

Or ot
Then f* can be at most the sum of a function of r and t .
)u(rfq = () + qlt)

Using this non-static isotropic line element it can be

shown (Relativity, Thermodynamics and Cosmology, Tolman, p. 251-252)

that the surviving terms of the energy-momentum tensors are
¢ £
S UM b — G.3y
Swl, = <4 r> 3+239- N (1)

SvT, - 8T 'kj?f*:iv)*Q*%‘?z'/\ (2)

A

. -] A .
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where accents denote differentiation with respect to r and

dots with respect to t

From spatial isotropy the measurements of stress should

be aymmetric with respect to x, y, and z directions, Hence
1 2 3
Tl = T2 = T3 and
‘2 i " |
S SN
BRI S, —_ =
4 's 2 Ay
df | L (de\_ L
dxli_ ‘l(f? Y 'y
As a first integral
dg G
ST = Cre
Ar
B
(e ¥ag = (¢ ror
-k
A~
S = 3G
~Va
Ve
3 \ 2
e = G~ 7 ar
2
< \/c,
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\
= —-151 where Ro is a constant which can be
Q \

Let Y/, =

positive, negative, or infinite. Thus the line element becomes :

3(t)
~ e

) I+ " Vars

ds? ]2 (dxl + y*do* &+ ¥ sin © d&“)l} + dt*
This line element has been derived from extremely straight-
forward and simple assumptions. If later observations lead to
contradictions one must modify either the principles of relati-
vistic mechanics or the assumption of spatial isotropy.
The line element can be written in several different forms
which aid in understanding the implied geometry.

a) By the familiar transformation

X= Y Sn® cos G Y=Y S8 sing 2= Ys O
one gets
. q@) . ‘ 2
ds® = ==& _ (O +dy v det) +dt

= [\ N Y.l/qR:]:l

which emphasizes the spatial isotropy.

b) By substituting

Vv Y/4R?
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the line element becomes

2
ds? = - e%(f)[ dr7 - —\”16.91 + Frsilo @9] i dtz
~ IR,

This shows the relation between the non-static line element
and the static Einstein line element.
c) Substituting ¥ = R, sinX

dsz = - Q:: ) (d:x + sWin 'Xd@ + g (XS\Y\ © 49 ) + d‘tl

d) By introducing a larger number of dimensions

2, =R D’ ?’7;23‘]‘/1 z, = ¥ sin © cos P
23=?Sinesin¢ 2,= Y cos O
where
2 ezl a2l vz, = RS
a Q(JC)

ds — (dﬁ.\ + d%z -+ dis + d.%.4n) + d'tl

Thus we can imagine our original space as embedded in a
Euclidean space of a larger number of dimensions. The spatial
extent of this non-static universe at a given time is a three

dimensional spherical sufface
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embedded in a four-dimensional Euclidean space (Zl,ZZ,Z3,Z4).

The proper distance for the spatial coordinates are

‘ Y2 9 (%)
69~“ = e d‘l(

Therefore the radius of the spherical surface is

. Va g8

R =R.=e
This quantity is conveniently spoken of as the radius of the
non-stat ic universe. Thus the expansion or contraction of g(t)
controls the expansion or contraction of the universé. But
note that, as defined,the radius RO could be real, imaginary
or infinite.

If the radius is assumed to be real the universe will be

closed. The volume at any time t is given by integratiﬁg the

line element (c)

I T L
Vv = S g JROC sin X sin © dX de d¢
o o &
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29
The "circumference" around the universe would be Q°=»QVFL3 k

On the other hand, if Ro is imaginary or infinite, the
model will be spatially open. The volume can be most conveniently

calculated by using the line element (b).

2¥ T oo Yo GlY)
V:SI < ?1stn9d‘\=d®d¢=oo

| o7

B, Density and pressure in a non-static universe.

At this point no assumptions have been made regarding the
nature of the matter filling the model except that it obeys

Einstein's field equations

|
~8vTﬁﬁ=Rw;_ER%m+Aqw

We now introduce the assumption that the material filling
the model constitutes a perfect fluid. Therefore we can use
the expression for the energy momentum tensor of a perfect fluid.

N v
T)’w = ona“'Pf* %‘é‘% - CS)JVPO



where Q;o and PO are the macroscopic density and pressure as
. . p
seen by a local observer at rest in the fluid. S%i- are the

components of the macroscopic velocity of the fluid with respect

to the co-moving coordinates.

Using spherical polar coordinates the line element becomes

gt ‘

2 P —
s = e ERT

2 _
(d\ra +CdO 4 Fsn’® d‘ba) P

The co-moving coordinates insure that the spatial coméonents of

velocity are zero

ds ds ds

The form of the line element now implies

dk

S

ds
These conditions simplify the energy-momentum tensor

— 4

3
T,=T, = Ts= ~% ' 4= Qoo

2

From Eg. (1), (2), and (3)
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- q(t) .

.2
8wp = — e - q ..%Q;ca + f\

A
R2 (4)

-9 .2
BT Q. = 2xe  *7ad -~ N

(5)
where the dots refer to time differentiation.; Note that if g(t)
is a constant, the equations reduce to those of the static
Einstein universe.

For the density Q%Q cne appears justified in taking the
averaged out density of energy, corresponding to galaxies,
intergalactic matter and intergalactic radiation. For the
pressure of the fluid it would appear reasonable to take the
sum of partial pressures corresponding to the motions of galaxies,
the random motions of dust or other matter in intergalactic
space, and the density of intergalactic radiation.

For the galaxies the pressure corresponding to their
random motions would be two-thirds of their kinetic energy per

unit volume

P = %3Q

from ordinary kinetic theory. For dust particles the pressure

varies from two-thirds the density of the kinetic energy for
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nonrelativistic particles to one-third for highly relativistic
particles. For radiation the pressure is generally one-third

the energy density.
\
P = /3R

For galaxies and other slowly moving particles the kinetic
energy density will be negligible compared to the energy density
corresponding to the mass of the particles. Hence the total

energy density is
3Po + Qm = Qoo

where Qﬁn corresponds to the mass of the galaxies and any

intergalactic matter present. This is an approximaté relation

which becomes exact as the pressure due to matter can be neglected.
Combining Egs. (4) and (5)

-3 .. .2
S Qm = 4%%:L e + 3g + 39 - 4 N

C. Nonconservation of energy.

9
Define ﬂtjk as the energy momentum density tensor

TPV - T»vﬁ
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Then
x> 2 S;()* = 0

when the Christoffel symbols vanish (i.e., in flat space)

For the case P = 4

J. — l\aqs‘ A2 a
M(Q“J ) 2 r(q‘gf*'q qa*q%?’%%o

ot At

since is unity. Substituting the metric coefficients

944

for a line element in spherical polar coordinates we get

.. #,30 2 ¥2 9 (1)
) Qoo ¥ sNO e } P, p.) [\{ sn® e O

1

at| (1 + T/aRIY 2t (1+ TarIY

Note that the proper volume measured by a local cbserver is

given by
3/2,9(t)
1 B
Y " sn® e g
= . Y SGB <5Cb .
g\/ D+ Y’/AR':]B (6)
Thus

._Cl*.thw 6\/> + P %&QgV) = 0O (7)
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This equation relates the energy of any element of the fluid to
the work done in adiabatic changes of volume.

It is obvious from Eg. (6) that the volume of an element of
the fluid is increasing with the time if g(t) is increasing
with t, and decreasing when g(t) is decreasing. Also, if the
pressure PO is a positive quantity greater than zero the proper
energy of every element of fluid would be decreasing when g(t)
is increasing, and increasing when g(t) 1is decreasing. Thus
unless the pressure is zero, the total proper energy of the
fluid will not be a constant. The principle of energy conserva-
tion can be maintained only by introducing a quantity to represent
the potential energy of the gravitational field.

For convenience Eg. (7) can be written

j 3/, () 34.9(%)
S (Qoo e + D, g_(e >= O (8)
dt dt

D. Non-conservation of mass.

Recall the approximate expression previously derived for
the energy density which corresponds to the mass of galaxies

and intergalactic matter

R = Qoo = 3P
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Using this equation, let us investigate the temporal dependence

of matter. From Eq. (7)
d =
L(en8V)+ 3HR V) + R $(EY) = 0 (%)

The total proper mass of the galaxy is N = ans\ﬂ Then

equation (9) becomes

——
—— T

_\__ ck _§_ .E’:E?, 4 A’Po Q; sv
N d+ Qm dt Qm &V dit

—

Since &V is given by Eq. (6) this simplifies to

_1L e - 3 aR | bPo dg (10)
M 4% Qm dt Am dt

For the special case in which the pressure is permanently
equal to zero, the mass will be conserved. The mass will also

be conserved for the special case where
S V) + 4 = O
358 )+ P 55 (6V)

This would be the case of a model containing a constant amount
of matter exerting negligible pressure and where radiation

exerts a pressure .= QY/B .



However, one could explain any change of mass as simply
the transformation of matter into energy, i.e., the mutual

annihilation of electrons and protons into radiation.

E. Behavior of particles.

What is the behavior of free particles in our non-static
model? Because of the principles of relativistic mechanics,
the motion of free particles will be determined by the equations

for a geodesic

d%° +r16~ dd dC o
ds? py ds ds

where the line element is

(%)
45t = S (47 e s e ae) e
+ T /AR,

Consider first the case of a particle initially at rest

with respect to the spatial coordinates \’,9,¢ , i.e.,
dr _ do _ db _ o at _ \
As ds s ds

The equations for a geodesic then become

2 g
d % T
ds? + {_—;‘4 = O
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o
As previously shown, all values of r—h4 are 0 . Hence

all accelerations for this particle are O .

jiit = Cf%3~ = Cich = c{at = O
ds? ds? ds? as*

This particle will thus remain stationary for all time. This
result is hardly unexpected considering our choice of co-moving
coordinates.

Introduce now the more general case of particles having
some arbitrary initial velocity. It will be convenient to

consider first the geodesic equation with G =4 .

2 UM v
d~t+\——14 dx c(iixs - O
ds? py das

4
Substituting the values of i Jy for our particular line

element one obtains

A
2 9 . 2_ [dd
2 \ (dx) L L P 2(@-@-)+ 1Py e(———)
dd;ca‘”'iep}*(ds)*‘zef” as) T 2 S PN os
where
(t
. 3 )
S (e

This can be rewritten as

—
—

it

O
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2
adt L, 1 dg _\]
ds? 2
or
s 40
ds at\ds| _ _ dg
dx 2 at
as) |

This can be easily integrated to give

Cit- 2 : “%@3
(os) ~ <

I

where A 1is a constant of integration.

The line element can be written in the following form

g ‘3tE) dp\*
S ci€> n o
- = | - Y g+ +¥ s dt
dt Q-{- V/A ) d
o~ (Ve
= | = W/en
where \\ 1is the velocity of the particle as seen by an observer
at rest with respect to ¥,©, P and who uses his own deter-
minations of increments in proper time and proper distance,

1q(t)

dt. = dt al, = _e_____i___ dr atc,
O+ a2

Substituting into the above equations

113
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uz/c.;z - Ae g(t)
\__ \J/Cl

Thus, if g(t) is increasing in time, the velocities of free
particles will be decreasing and vice versa.
By solving these equations the energy of free particles

can be discussed. One gets

==y = - EAL - Ae*

Thus the energy of free particles will decrease as g(t) is

increasing.

F. Behawvior of Light Rays.

The equations for a geodesic would be applicable to the
motion of light rays in the case ds = 0. For the special case
in which the ray of light moves only in the radial direction

we have 19 = .C_ig.).zoand
dt dt

|
__q@) r?
__._Y.. = _+_ - 2 E + ) ‘1]
ddt e 4 R

Using methods identical to those of the preceding section

one can show that if a light ray moves initially in the radial
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direction it will permanently continue its motion in a radial
direction.
Integrate over the time interval needed for a ray to travel

between the origin and some point «r

r
2 i
-5 9(t)
dr _ 29
: = e dt
\+ Y
Z 4R, t,
£, (11)
-\ X —%9(t)
2. R. tan 2R. = < * dt
e

To evaluate the right hand integral let us assume g(t) is

linear in t

g = 2Kt

The integral becomes

-kt —kta

e - &
¥ = AR ten ——pe

In the case of a closed, always expanding model of the universe
this relation leads to an interesting restriction. Assuming
kt

the linear dependence of g{(t) and a real radius R = Roe

one sees that light can always be received at the origin at any

1is
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finite time t2 if a sufficiently early starting time ti is

chosen. However, light which leaves the origin at t1 will

reach a maximum coordinate distance

R e"‘k't'
Yy = 2 Tan ———
° 2kR,
even at t2 = » , Depending on k and RO there exists a

specific starting time after which light cannot travel completely
around the model. An observer could then, in principle, obtain
information about sufficiently early states of the model, but
even by waiting an infinite amount of time he could not receive

information on their subsequent behavior.

G. Doppler Effect.

Let us consider the observer as fixed permanently at the
origin of our coordinate system. Differentiating equation (11)
one gets

! ~%9 | dv
~-xQ ' = -
e{ 2 S‘tl - e 2 St\ - \ + \,.7/4.R3 (d‘t) Stl

connecting the "time" interval bt

1 between the departure of

two wave crests from the source to the interval Sti between

their arrival at the origin, where 9, and g, are the values of



- 24 -

g(t) at t = tl and t = t2 respectively. Since %&' is

the radial "coordinate velocity" of the source at the time of

emission we can write

\
| Y = e a q' Uy
| + ‘7hjzj dt <

where WUy is the radial component of the velocity of the source

as measured by our observer at rest. This gives

A 19 -39
- . - ' 2 Y
e 25 §t,= e % *+ e < &%

. . o . .
The proper time interval Stl between the emission of these

wave crests as measured by an observer moving with the source

is related to stl by

px
6‘t° - eq‘ _C_’:_\”_ ( K Y sin @ %ii) + ‘ 8*‘.!
C T (e et ot

This can be rewirtten as
V1

g7 = (- %) o

For the observer at rest the proper time between the reception

of the wave crests is

111
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S.t; = Stl

Equating the ratio of periods of the emitted and received light

to the ratio of the corresponding wave lengths one gets

o L(ea )
»e8x _ st _ el S+ )
>~ - str (1- Bre2)?

Consider only the term connected to the general expansion

of the model

N+ BA NS
N

introducing the radius

1
R = Roenq
then
.§_>.\. pond RQ— RI
FaS R,

where R1 is the radius of the model at time of emission and
R2 is the radius when the light arrives at the origin. The
red shift is thus closely correlated with the general expansion

of the model.

This dependence can be clarified by introducing the total

proper distance from observer to source.

Wy
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Y . Y
= e 2 = &
| ‘ + ¥ 2 2 2 2
o /ARO o \ + /4Ro
as determined at times t and t_. Then

1

>\+ E)>\ — Qz _ \+Q1~Q‘

A % 9,

where Ql~ Q. is the increase in proper distance from the
source to the observer that occurs during the time it takes

light to travel from one to the other. In a first approximation

the time of travel equals the proper distance

N+ BN 60 W
N =g =

-

C

where u 1is approximately the velocity of recession. Because
of the homogeneity of the model, observers at rest would see
similar red shifts in other portions of the world: there can

be nothing unique about our initial coordinate.

H. Change of Doppler Effect with distance.

How does the Doppler Effect change as we go to more

distant galaxies? Differentiate the previous expression
i

SN (3 3)) \

——:e —

N

with respect to r, the distance to
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the source. Note that 9, is a constant since this is the
value of g(t) at the origin when the light is received. On the
other hand 9, is a variable since we are interested in going

to greater distances r where the light must be emitted at an

earlier time tl in order to reach the origin at t2 . Thus
{
%\9.~ 9
Qe - _ 1 %M dg gt
dr \ X 2 at dr

where dt is the change in the time of emission which corre-

sponds to a change dr. From our expression for the line element

it 29
dr \-&*2&;&

and

79 .
4() - 8
dr \ N \+Yan? 2

As long as r << RO and the change in él is small the de-
rivative is approximately a constant. Hence for "reasonably

small" r we have

5%} oC ¥2 (Hubble's constant)
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At large distances the relationship is no longer linear. This
non-linearity offers some possibility of distinguishing between
various models,

By choosing the following line element

. X
2 AV I | Fe” 4 Femo ddt |4+ g
ds” = — e VA
R2
y

where ¥ the derivative becomes

+ AR

592 :
& [Br) - % Sl
aF \ A (\—F“/R’;Y* 2

I. Closed Models.

Consider a closed model with a real radius Ro and
assume the density Q@o and pressure PO can only be zero

or positive. From equations (5) and (8) one can write

3 3
‘iq(t) a-qtt)
<& e _c.i_-(e \ = O (12)
2 (e )+ R &
L2
[« Qoo '—-38 + 4('&-{\ - N (13)

(t)

b9
and one recalls R = Ro e
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The first equation then becomes
A 3 d 3
— ~+ c— s
ol (anR » 33 o\t(R ) O

which becomes

ﬁi@”ﬁ'\ = - 3RR?

(14)

and
dQeo = - 3 (Qoo + po) (15)
dR =3
Thus oo R3 and €?° can only decrease or remain constant as

R increases. The density of the fluid will go to zero if the
‘radius goes to infinity so all ever-expanding models will
finally have the properties of the de Sitter model: Q°°='~ R=0
Substitute the exponential dependence of R(R = Rd e%g(t)

into Eq. (13).

2

2
- 3 (R 4 3 4 [dRY)
S7Qe = P?(R) Y4 R"(cit) A

then ‘ ‘IQ.
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Since the rate of change of the radius of our model must
be real, the quantity inside the bracket must be positive or
zero. If we consider any given value of the cosmological

constant /\ this leads to a restriction on the radius:

3
= D7 Q. = N
Let us define a quantity CQ(FQ)

| 8Y o, R>
QR) = % - BV = 51(3“ - (16)

and investigate its behavior. The extrema of Q(R) are found

by differentiating

a4 _ _ e . B\szg‘oo - 0
dR - R® dR

Using equation (14) this becomes

aQ e L 247RQu*+R) _ o

P - — 7 e

AR R3 R

(17)

Subsiituting the definition of Q(R) into this expression one

¥

i

s -
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finds

|
QUQ)=E1+ SR > O

(18)
This is an equation for the value of Q(R) at an extrema or
point of inflection. The second derivative becomes
2 . :
A9 _ 18 24w (0w R) 54y AR L 4y IR
e h R4 Rr? AR AR

Using equations (16) and (17)

2
d Q — R=] — QD —_— 14 3 + dv,
AR? R R *'(9*;‘{—')' * 4w

dR

i

R
TR O

AR
Hence
AR L Qe+ B — a maximum
AR R
ab guo+ R - a point of inflection
dR R
dR > Qoo™ ¥, —> @ minima
AR o}

114
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Unless we assume the pressure of the fluid can be increasing
as tlemodel expands, there can be no minima or points of

inflection. We must have a curve with one maximum and no

A\

‘minima.

Q

The general features of the curve can be .easily explained.
From Eq. (14) it is apparent that (—%—{ QWR?’) can only decrease
or remain constant as R increases. From Eg. (l17) one sees
that Q rises asymptotically from minus infinity at R = 0

1f we exclude the case of a completely empty (Q“ = 0) model.
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Q will continue to increase as R increases at least until Q > 0
since Eqg. (18) require§ Q be positive at an extrema or point of
inflection. If R coﬂtinues to increase, Q must exhibit a
maxima. Finally as R becomes very large, Q must approach
zero asymptotically.

Let us now discuss what models of the universe are possible
subject to the preceding restrictions on Q.

a) Monotonic universe of type M, for N\ > Ne.

Denote the maximum value of O by P\E' For

the /A = const. line makes no intersections with the critical
curve so the model is that of an ever-expanding type which at
some singular state F?%'Z-C) and proceeds to the final state
of an empty de Sitter universe as R=> 0o, This is a monotonic

universe of the first type, M As a model for the physical

1
universe it has the disadvantage of spending an infinitesimal
portion of its existence in a condition which differs from a
completely empty de Sitter universe. Since our observations

of the universe presumably give us a good idea of the conditions
that would be found anywhere at any time, this model can be
ruled out.

b) Asymptotic universes with ﬁf‘f\g.

From Eg. (18) we have

11
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= 1
Neg = B8 P + R

at the maximum point of Q, where PE and RE are the
pressure and the radius at that point. If we consider a static
. dR __ . . .
universe :;E-CD at this radius R_ and cosmological

B
constant g

= 3 _ |
8w o, =2 Ne
. These are the equations for pressure and density of a static
Einstein universe. Therefore a stat ¢ Einstein universe could
exist with a radius corresponding to the maximum value of Q.
with AN=/Ag two types of behavior are possible. The
first type begins from a singular state Rs < RE and asymptotift

cally approaches the static Einstein universe at R = R_ where

E
4R &R : .
both =7 and gt would become zero. At times earlier

- tﬂan the singular state this model would contract from larger
radii down to R = RS. This model is an asymptotic universe
of the first type, Al
The remaining type of behavior for AF‘ﬁ\E is given by
" a model which can be regarded as having asymptotically started

from a static Einstein universe with R = RE at an infinite time

in the past and expanded monotonically into an empty de Sitter
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universe. This is an asymptotic model of the second type, A

Q ASYMPTOTIC MODELS

5"

A Static EwnsteEin UNiverse

A
m

/

As models of the physical universe both of these types

have the same disadvantage as type Ml;

they spend only a small

fraction of their existence in conditions which approximate our

observations of the universe. Type A2 has

feature of originating from a non-singular

volume at an infinite’ time in the past.
¢) Monotonic Universes of type M2 and

of types O, and O, for O <N <A

For N between 0 and Ag two types

the interesting

state of finite

oscillating universes

of behavior are

- possible. One type of behavior concerns those models that

expand continuously into the future from a point on the critical

curve at Rl> Ro - This model begins at a

finite radius and

119
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1*,expands monotonically to an empty de Sitter universe. It is

designated as a monotonic universe of the second type, M2

'friThe main disadvantage of this model is the same as model Ml;
it spends all but an infinitesimal portion of its existence
in a state unlike that which we observe.

f

: The second type of behavior is characterized by models

. .which expand from a singular state at RS4RE to a maximum
radius given by the intarsection of the /\ = const. curve
with the critical curyai’ Once the model reaches the maximum

t .

radius it will begin.tg contract back to the singular state from

¥
which expansion will begin again. This is an oscillating universe

of the first kind, Ol

:';It has the advantage of spending its
entire life in a conditibn where there is a finite density of
matter. However, itfhaé a disadvantage since the singular state
at the lower limit of éontraction is not described by the present
equations.

If there exist conditions in the universe which permit the
pressure to increase agfthe universe expands the critical curve
can have a minima. Sudh.a minima gives rise to an interesting
type of behavior. If /Q assumes a value Bétween this minima
and a secondary maxima 'of Q, there can be an oscillation between

a true minimum and a maXimum radius. For reversible behavior

this givesrise to a strictly periodic behavior without singular
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states. This model is an oscillating universe of the second
kind, O_ .
2
This model appears to have substantial advantages over
previous examples. However, the assumption that pressure can

increase as the universe expands seriously limits the usefulness

of this model.

OSCILLATING MODELS
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d) Oscillating universe of type N for N\& o .

Finally the case for /\ £ O must be discussed. It is
obvious that the only behavior possible would be an oscillation
of the type Ol between a singular state at the lower limit

and the maximum radius. This would have the same advantages and

disadvantages previously mentioned.

This model represents a very important case, that of /\==().

At the present time there exists no evidence that AN\# O .
If, ‘indeed, A= O a closed universe could only be typé Ol
The cosmological constant was originally postulated to
obtain a universe with a finite density of matter in the static

situation. In view of the non-static models this assumption

is no longer necessary. Such a cosmological constant must be

"reasonably small" or its effect would be noticeable in planetary

motions.

J. Open Models.

It is also possible that the universe is infinite in
extent with R either imaginary or infinitei In this case
the possible types of behavior are quite restricted.

Consider Egs. (i2) and (13)

a4 3,9(t) 3,9(t) )

e o) + =Y =
ax \) R dt(e o (12)

131
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“93() 3 [dg)
Sw e = §§L ’ <+ éi .fl — :
Q R € 4 \av ) A (13)

ol
For an open model of the universe the radius, either
imaginary or infinite, is a quantity of limited usefulness,

so there is no advantage of introducing it..fRe—express Eqg. (12)

aszs
i (Q 83/2(3 3 3/1‘5
SCAR ) =~ ZhRe
and
e -2
Aq 2
| %9
whé}h show that 0o € and Qf° can only decrease or

remain constant as g increases, if we again assume that the
pressure in the model doesn't increase as the model expands.
Eqg. (13) can be written:
Yy alt 2 3
d(eliq( )) —_ Bﬁgoo e 4 /\;) e _— .,._..
| = 3 ‘ B

dt

By our assumptions RO is either imaginary or infinite so

. this equation can be re-expressed:
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1/2

HEY

B

8’1;g°,., eq + J._,'_f_\r__feq N Az

where A 1is real q&antity that is zero if RS is infinite.
The quantity in the bracket must be posifiveﬁSb
2 =9
_3Ner - Bro. < A

.4\ {

is a necessary restriction on g if the behavior of the model

is to be real. AlsQi

_ 3&5?3 BT Qoo = O

s the condition for a reversal in the direé¢tion of the rate

of change of g with t . Define Q as

Q

1l

~3A%e "’ - 8wq.

Q is always negativé, asymptotically approaching Q = - ® as

1
29

l/zg
e goes to zero and. Q = 0 as e

goes ’to infinity, without
Sy :
any maxima, minima, or points of inflection,

E
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)
= 3(t)
o2 8

Clearly, two types of behavior are possible. The first:®

type occurs for AN O and would consist of the mopotonic
. ;:

increase of e?d from a singular state to infinity. Essen-

tially this is an M, type universe which ends in an empty

1
de Sitter universe, including the possibility of a Euclidean
Space with N\ = 0 .
The second type of behavior occurs for N <O . 1In this
g

case e>’ would proceed from a singular state to a maximum

and return, giving rise to an oscillating universe of type Ol.



NEWTONIAN COSMOLOGY

The first attempts to understand cosmoiogy on a rigorous
basis were made durihg the nineteenth century with the
Newtonian theory. It is ironic that these attempts failed
not because of any faﬁlt of Newtonian theoffkbut because of
the assumption of a static universe. Following this failure
interest in cosmology decreased. Not until{Einstein began
exploring the cosmological consequences offéeneral relativity
in 1916 did interesl awaken. Then followed?a 15 year period
in which Einstein's ?elativistic cosmologyywas consolidated
and extended. Not until 1934 did Milne andiMcCrea attack
the Newtonian problem. They showed that i;‘many ways Newtonian
cosmology was very similar to relativisticﬁcésmology. The
Newtonian formulation of cosmology is very‘useful because it
reveals much of the essential features of.felativistic
cosmology without the mathematical difficj}ties.

Newtonian theory is fully accepted aé.is the cosmological
principle. Thus our "universe" is both isqéropic and homo-
geneous. There is a uniform even-flowing Néwtonian time and
so the relativistic problem of clock synchr&nization does not
arise.

Consider an observer 0. He observesuthe motion of a

v

{? and t : v(F,t).

RO

particle relative to him as a function of

]

4y



The density and pressurg are: e("f, t), P,‘(?,t)

A secénd observer O' wil.l see the pa_irt’icle move with
velocity V'(F,t). He sees a density Q(f’,‘t) and ‘p:ress.ure
P(?’,t) . Since density and pressure are d:efined independently
of 0 observer there is no need for a prime on | these quantities.
The cosmological principle now demands that T?:Q and P
should be the same functions of ?’ and ‘t as -\7,6 . P are
of T,t. Othérwise the‘ two observers would.have different
pictures of what is going on.

Assume. now t =0 for simplicity a_nd that the vector
00' is ¥ . Then §:"=‘f—3 and |

! . "= —bl - - Y
S W(E-3) = V() - V(@) Q(i"—a) = e(‘f) P(E-3) = P(D)

By the cosmological principle V' is the same function of

its argument as V. Thus
VE-3) = V(D -v@E)

From this we see that ¥V is a linear vector function of its

argument sq@

V = A7 where A is independent of r .
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The assumptions of isotropy and homdgeneity insure
that the density and pressure are independent of position.

Hence

Vv = f)7T
Q= Qb
P = P(t)

The velocity can be integrated to give

-h~ -ty
r = R(t) ro
where R(t) satisfies
1 dr
R I - £(t) R(to) =1

and f; is the position vector of the particle at time t,-
From this we see that the only motions éompatible with homo-
geneity and isotropy are uniform expansion and contraction
with a time dependent scale factor.

Combining the equation of continuity wlth the previous

equations

_ e _ %
0 3% + dw (QV) = +,:3 Q(t) £(t)

{

Integrating this and using the definition of R(t):



o)
e(t). C = 3 .
R™(t)

This equatibn is the obvious condition that if the universe
is scaled up by a factor of R all volumes are increased by
R3 and the density is correspondingly lowered.

Let us consider our space as a fluid. Euler's equations

of hydrodynamics can be applied:

where F is the body force per unit mass (gravitation).
The evaluation of the gravitational force in an infinite
system is cleafly rather ambiguous. In this model we shall

use Poisson's Egn.
dw F ;wv4“YQ

Take the divergence of Euler's equations -

3 af 2)

— +
\ dt £
This result could also have been derived by assuming that
the effective gravitational force on a particle viewed from
0 is due entirely to the sphere of matter with center at 0

and its surface passing through the particle.

= -4“¥Q (1)

13¢
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Using the definition of R(t), the eqpation for Q(t)

and substituting in equation (1) we get:

R——2+—-xQ(t)=o'f (2)

From this equation it is obvious that a static universe (R=1)
is impossible except when the density vaniéhes. It is here
that nineteenth century cosmology floundered. Various
proposals attempted to overcome this difficulty by postulating
ad hoc changes in the law of gravitation. Due to this
arbitrariness these changes found little favor.

In general relativity an equation exactly analogous to
(2) occurs where the alteration of the law of gravity is not
arbitrary. The Newtonian analogue of the relativistic pro-
cedure is well defined and consists of introducing into the
definition of ¥ a term proportional tb the distance and

independent of the density. Thus F becomes
F = ——§-‘£Q(t)r+§/\r

where P\ , the cosmological constant, has dimensions (time)_2

and the factor 1/3 is introduced for later convenience.
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Equation (2) now becomes

N

2 dR
d

47 1l 3 :
R + _ES_YQ(to) "'3'I\R._ = 0 (3)

"

The cosmological constant was firs£ introduced to obtain
a static model of the universe. However;&the solutions of
Eq. (3) for various values of N have att}acted much interest,
The integrated form of Eq. (3)

(ar)? c 1 a2

(a-—) =§-k+§/\R=G(R) (4)
is identical in form to the relativistic equation. k is a
constant of integration which has dimensions (time)—2 and

3c = sv‘J\{(tO) .

Equation (4) can be integrated in terms of elliptic
functions but it is more illustrative to look at specific
cases. The direction of time will be chosén to lead to an
expanding universe. The time origin is arbitrary and will
be chosen for convenience. The parameters./\ and k are also
arbitrary but C must be positive since we are dealing only

with positive mass densities.
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Case I: k( (»)

i)y N> O

Here G(R) is a positive function of R since

dr 4RV
3t must be real and EE) positive. The minimum occurs at
V3
R = 3C
m 1/\

G(R)

: >

R R

For small t we assume that R is also small. Hence

terms in k and %/\R2 can be neglected compared to C/R .
dr cl/2 % %
= 2 A2
EE_;%%R dr = c* dt

\
R — oct?\'/3
4

As R-—»R.m the rate of expansion slows down and
A

approaches a constant value
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- 8 -
dR)z_C w4 L 2.5 ar\?> _ K+ IA2C - 3k
at] = & 753N Rmka‘t\‘c‘ 3NN 2
|/1
(&) (2C-k)
dt (3(:/1,\)‘/3
For large t R is large so terms C/R and -k can be
neglected.
dR | %z \ ‘él
=N R=> R exp|(5n)
Reo}
-
<
ii) A=0O

G(r) is a positive decreasing function of R.

For small t we again consider only the term C/R . Hence

)
X ,(q ctl)’3
4

The rate of expansion slows down continuously. For large t



iii) N < Q

0 &R <R

c
of a cubic
R is, of

c

before but
the system

until R =

G(r) is a decreasing function of R, positive in

and negative for R » R , where Rc is the root
c
equation
k
R -2 r+ X oo
A AN
course, the real root. The expansion begins as

dR

slows down as R-»R where ——
o] dt

= 0. For Tt>f%
contracts and runs through its previous phases

0 . Then the cycle begins again. This universe

is an oscillating universe.

143}
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e
<
i)y N> ©O
| 3¢ V3
G(R) is positive with a minimum at R = |=— as
(R) P m (ll\) _
' in case 1 (i). This case is similar to that one except that

we can obtain an exact solution.
dR 2 C 1 2

Since we expect this solution will give an infinite

expansion choose the following type of solution

R3 = A(cosh Bt -~ 1)
2 dRr .
3R -d—{: = AB sinh Bt
2 X2 2.2 2
(QB) _ (aB)sinh™ Bt _ A"B" (cosh Bt-1)
3 = ‘
t (3R2)1 9R4

144



But
3
cosh Bt = 1 + ;
2
2 2 R3)
<§;)2 ) A B {I} + - -jX= A2B2
dt or% o™
2AB B2 2
= e e -§- R
9R
Hence
2 1
B _ 1 _ 5
5 = §/\ B (3A)
oaB® c 283N _ o= p = €
g - o T2
Finally
3 _ 3C a. g
R = .i_K[ms\«(st t !]
)
Rt)

- 11 -

/
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ii) /\=O

This is a trivial example

1/3
9 2
e (2 o)

Rtb)

e

.t

iii) N <O
This case is almost identical to case I(iii). Here

the explicit solution is determined in the same manner as

case II(i). One gets

3 3C 2
R™ = QF/_\)E - .cos (-3A) t]
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Case 3: k>Q

This case exhibits much more variety than the previous
cases. Since k>0 G(R) could be negative for appropriate

values of k, A, and C. BAs in the previous cases G(R)

3C

\/3
57\) . For what values of %k, A\,

has a minimum as Rn = (
1

and C is the minumum of G(R) equal to 0 ?

C 1 2
§— -k + §ARm =0
m
_ A 3¢ -
Rmk = C# 3 2/\$ Rmk 2 S
3 _09.3 3,3 ax>
2N 4.2 /\c T2
oc
A
G(R)
N>N
\ =
S
\ Rim R
A< N <
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iy N>AN.

@(R) is always positive with a minimum at
yé
Rm = (%%) . This case 1is similar to cases 1(i) and 2(i).

Ry}

N>Nc

L "‘ |
EMAITRE =
MoDE L

e

il =
A=A,

G(R) is always positive except at the minimum point
3C

R =35 =Re - This gives rise to several possible solutions.

ii(a) There exists a static solution R = RC .

ii(b) For small times R behaves as case 1 and case 2.

v
oct? | >
4

As usual the expansion will slow down as R increases.
However in this case when R = Rc the rate of expansion is

0 and the universe will become static.
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ii(e¢) If R> R, originally the expansion will not be
limited. As R gets large the only significant term will

be 3—;I\R2 SO

1 >
R — exp{t(§/§ ]

A EoDiINGTON -
R{t) LEMAITRE

MobE L \\\

Rt [

iii) A A >©
G(R) is positive for sufficiently large or small
values of R. However there exists a range Rl< R<R2 where

G(R) is negative. This gives rise to two solutions.

//E\NSTEH\Q Nobe L

144
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iii a) For this case 0 € R £R the solution is

l I’
very similar to cases 1(iii) and 2(iii). The maximum value
of R is Rl' As the universe approaches Rl the expansion

slows down, eventually reversing itself. This is an oscillating

universe.

iii b) R2.$.R. Since R is never smaller than R2 one

need consider only the term in %[\Rz. Then

i
2
R — exp ‘:t( /\) ]as t—> + ©o
C
1
R ~~ exp[—t k-j/\) ]as £ = — OO

Initially R decreases until the minimum radius R2 is reached.

SV

After that the universe expands.

150
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iv) o> N\
G(R) decreases monotonically. This case is equiva-
lent to cases 1(iii) and 2(iii) and gives an oscillating

universe.

}

R{t)

\ -

<

These examples cover all possible cases. It is illumina-
ting to classify them according to the type of universe they

lead to.
Class I. The static, or Einstein universe: case 3(ii a).

Class II. Models which expand monotonically starting
at a definite time from a2 point origin R = 0: cases 1(i),

1(ii), 2(1i), 2(ii), 3(i).

Class III. The model which begins from a finite value
of Rat t = -~@ with a gradually increasing expansion. This

is the Eddington-Lemaitre model: case 3(ii c).
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Class IV. The model which starts at a finite time from
a point origin R = 0 and expands more slowly as time

increases. R tends to a finite limit as t-»00: case 3(ii b).

Class V. Models which oscillate between R = 0 and a

finite value of R: cases 1(iii), 2(iii), 3(iii a), 3(iv).

Class VI. The model which contracts from infinite R

at t = -00 to a finite minimum R and then expands to infinity:

case 3 (iii D).

15



OBSERVABLE QUANTITIES - A practical view

The observational quantities that are available to

distintuish between different cosmological models are:

1) apparent magnifﬁde of galaxies

2) red shift

3) Angular diameters of galaxies and clusters of
galaxies.

4) galaxy counts

Different cosmological models predict different relations
for these quantities. In principle, therefore, observations
should be able to determine the validity of these models.
Unfortunately, however, the differences become significant
only over distances of the order of the radius of curvature
Qf the universe.

Also, the large variety of possible models makes any
final decision impossible because enough observable parameters
do not exist in the equations. Let us restrict our view then
to those evolving models where the cosmological constant is
zero. This reduces one Rarameter and makes a unique decision

‘

between the evolving models and the steady state model

possible in principle.
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Adopt the familiar assumptions of isotropy and homo-
geneity. The most general expression for a line element is

given by

dr2

l—kr2

ds2 = 02 dt2 - Rz(t) du2 = c2 dt2 - R%t)

+ r2(d92+sin26dq3

du represents a three-space of constant Riemannian curvature
which is independent of time. Two familiar examples are
cartesian coordinates and spherical polar coordinates. The
functioan(t) is determined by introducing this line element

into the Einstein field equations giving -

2 os 2.2
_R_2 N 22 . 811261>= _k c2: + /\Cz (1)
R c R

}
2 2 2
R _8nGg _ _ke | Ac (2)
R> 3 R 3

P is the isotropic pressure of matter and radiation, Q
is the density of matter and energy, /N is the cosmological
constant and R2 is the Rieﬁann curvature. This curvature
can be either greater than, less than, or equal to zero

depending on the parameter k.

k= +1 closed Elliptic

1 open " Hyperbolic

li
o

Euclidean



Subtract Eq. (2) from Eg. (1), considering N = 0.

R R, P
R 416(-3- .a\ =0 (3)
Egq. (1) and Eg. (2) hold for all time. Denote the
present values by a subscript 0 . The resent value of the

Hubble constant relates the velocity of recession with the

distance.

o
i
o”lo™*

Define a deceleration parameter Qe

- _R
W R

Eg. (3) becomes:

5 .
+ e | -
R 4“6(3 + 'z-:‘) =0

Substituting the deceleration parameter 9.

. 3% _ BH:q,.,
Q& 2 Ax G

Note thet q > (@) for all physical systems.

(4)

(5)

Assuming the

155



present value of Hubble's constant HO = 75 km/sec 106 pcC

we get

Q° S+ _3__?::_ = 2.06 x 10‘290‘_0 gm/cm3
C

If q, can be determined from red shift measurements then

+ EEQ is known.
Re ™ 722

If the definition of Hubble's constant is substituted

into Eqg.(2) we get the following result for A= 0 .

kc_‘l — 8 '“' G Qo Py
Rl — —__5"'—_— - Ho

Combining this equation with Eq. (&)

ke _ 4wG ,, _ ATG . 3P
R2 3 & 3 q, Re >

(6)

- 476G 3P<,
- é:;a (\Q?(?16L° )

This equation demonstrates a major tenet of general rela-
tivity - that the intrinsic geometry of space ( k/Roz) is
determined by the energy content of the universe as observed
in the total density and pressure.

Let us estimate the values of density and pressure.
QT04
3

The pressure comes from a radiation term and a pressure

due to the random galactic motion (QQ/Z) where ¥V is the

150
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random radial velocity which is observed to be less than

300 km/sec. The density Qg comes from the matter density
4

and the matter equivalent of the radiation density (Fggér_)

where a is Stefan's constant.

Thus
4 2
+ 2als + 3Rxm¥% _3_________H3 9-_ (7)
%m c? c? T T Av 6

At the present time the observed matter density is about

10-'3l gm/cm3. The radiation temperature of intergalactic

space has recently been identified by several measurements.

4
as about 3° K. The radiation term oizi for 3° K background

33

radiation is about 10 gm/cm3. This is smaller than the
observed matter density by two orders of magnitude. The
random motion pressure term -;iggglz is similarly negligible
compared with wa,. It appears that at present Po is

approximately O.

Then Eq. (5) and Eg. (6) become

2
Q. = 34\?!’06(10 = 2.06 x lO--zgc:L° qm/cm3
2
kc;1 _ Hoz 2q.- 1)

in a dust filled universe (93# 0, P =0).



One observes that Q,=1. This predicts a density
approximately 100 times the observed amount of matter. If
the cosmological constant is zero, this may indicate the
presence of large amounts of nonluminous matfer in space.

The limits of G, for a dust filled universe are:

Q.”> 1/2 k= +1 closed, elliptical

q.= 1/2 k= 0 Euclidean
0<q.,<1/2 k=-1 open, hyperbolic
the lower limit for exploding models is @, = 0 for k = -1.

In this case Q. = 0 and the universe is empty.

Look again at Eq. (7). As we have seen in the present
epoch the universe has negligible pressure. However, if the
temperature of the universe at some time in the past were
significantly higher the pressure term would dominate. In an
adiabatic expansion the radiation density decreases faster
than the matter density Q . General considerations indicate

that T wvaries as 1/R while Q varies asl/R3. The radiation
o T4

cx

. 4 .
term varies as 1/R so for small R is larger than Q .
Thus in the early stages of an exploding universe the radiation
dominates over matter. At a time far enough in the past the

entire density and pressure are effectively due to radiation

alone.

15§
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a
wlg

Then Eq. (7) becomes

2 2
2 = 3Hs g, ¢ where U = aT" (8)
Aw G

and Egq. (6) becomes

2
<A Bvsuo(”_‘) (%)

2 T rd

R, 3q.c
Substituting Eq. (8) into Eq. (9)
H e

Xc
P'l
\o

R 3
= HO (q—o— ‘)
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The limits of g, for a radiation filled universe are:

q.7 | K = +)

q.= |\
O<q9, < | X = —|

~
i
O

A._MAGNITUDE - RED SHIFT RELATION

In 1928 Robertson and Hubble independently discovered
a linear relation between apparent magnitude and red shift.
Subsequent studies showed that the relation between log %
and Wy, is linear for red shifts less than =z = 0.15.

Theoretical calculations show that there should be a
linear relation between the metric distance u and 2z for
all models which obey the cosmological principle (isotropy,
homogeneity). Unfortunately we are unable to directly
observe metric distances. Only the apparent magnitude of
stars can be directly measured with a telescope.

An additional complication arises which provides a
possibility of distinguishing between cosmological models.
The speed of light is finite so we observe different parts
of the universe at different times. Thus if the expansion
rate varies with time the relationship between m, and (Oq z

(red shift) should deviate from linearity. Of course no
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deviation will occur until the light travel time is great

enough for a significant change in the expansion rate. Since

the amount of deviation will depend on the different expansion

rates this offers an obvious test of cosmological models.

The metric distance of a galaxy that emits photons at

t, that are observed at to

is
A ¥
u=c .9—&- - ( .__._..C_\i____._.
R - )4Tfj2;f“ where the observer is at r = 0 (10)
t, o

which follows from the general expression fcr a line element

since for photons ds = 0.

Consider that the galaxy in question has total luminosity

L. The apparent bolometric magnitude for the observer is

0 - L

4w RIc>(+2)

(11)

. |
AVRo 0 represents the area of the advancing radiation

wave front. Because of the curvature of space this is not

2 . .
equal to 4 YR U2. Integrating the expression for the

metric distance:

"‘ » .
[lin Y, K= = X, T S \\
W= 1 k.= O =y Y, = W
L=
st vy k = —| = ¥, = Sihh W
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TFhe metric distance is R, or Roc’(u). Hence ¢ (u) = r, .

The red shift can be expressed

\+ 2 = Vilemred) _ Re (12)
Y, (observed) R,

These equations are now sufficient to obtain the [m,ﬂ
relation.

In the steady state theory k =0 so @Q(u) = u . The
expansion of the universe is required to be independent of

time. Since H = j& we: have
o} R

_ <
R(t) = BeHo where B is constant (13)

Substitution of Eq. (13) into Egq. (10) gives

to

= el & _ < ke—\'\tl _ e——H'to <l
e Rty  BH H\R ™R,
€,

Substituting Eg. (12) into this equation we get:

Eg. (11) now becomes

L

o = piamziiesy

16V
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which can be converted to apparent magnitude
Mol = 5 log z + 5 log (l+z) + C

where C is a "constant"” which depends on absolute luminosity.
Similar methods have been used to find tm,z] relations
for evolving models. It has been shown that for all models

with q.,” O

Mot = 109 ‘é’zi%i*(‘lo“‘MK‘ +21q,3) ~ \ﬂ+c (14)

For the case where Cl°=-0

mbol =5 log z (1 + % z) + C
The constant can be determined from observation. The
part of the constant related to the red shift of distant
galaxies can be split off as an additive factor k . The
most practical wavelengths to observe are between 6200 g
and 7500 g because for z <% k_is close to zero for the

R

entire range of z . Then for the steady state model

m_ -k =05 1log z (1l+z) + 20.266 q, = -1

For an evolving model with ¢ > O —

163
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Y/
m, -k, =5 log -—‘QY_CLJ +(q.- a)(k\—r 29.2) - | }}'zoruoa

i
o

For the special case of q,
m, -k =51logz (L+ %)+ 20.266

Plotting these results for varying values of q,

1
764
q’u, 3
RED SuteT vs. MAGNITUDE q.:%%
9> 5
xly
b .0 T2
4,=
3.=0
1 9=t
5.0
//
/‘/’////
A ot
Y . . , . . . N
9 \a \¥ 22
Mg - Kg

The 200 inch telescope can determine red shifts of
z = 0.5 under perfect conditions. However, the accuracy

of the magnitude determination is not sufficient to select
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any value for a, - Photographic techniques must be improved
and a more complete theory of galactic evolution must be
developed before the observational data can be used to select

the appropriate world model.

B. COUNT - MAGNITUDE RELATION

If galaxies are uniformly distributed in space counts
to a distance wu will be proportional to the volume enclosed
within u. Volumes in Riemann space vary either faster or
slower than U3 according cto whether k = +1 or -1 so a
determination of the spatial curvature should be possible.

In practice one counts galaxies to successive limits of
magnitude where the relation between u and apparent luminosity
is given by Eq. (11).

Let N(m) be the number of galaxies brighter than apparent
magnitude m;n the number of galaxies per unit volume; Q the
number of square degrees in the sky. Assume all galaxies
have the same intrinsic luminosity. It has been shown

(Mattig, AN., 284, 109) that

-% ]
_2wn ) (-29.) PATPE- sl P) Sor el

heve
" o = AkQo N

3.0+A) - (@,-N(1+ 22

° (Qq:")—gll(s\v:‘P— Pi-P2 ) Cor k=i (1D)
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and

A = loo.zﬂ“k‘ka“c) (16)

For k =0

-3
3
N () = —4—31‘@‘-‘——&;[31—(\44\»« \+2A)1

Bondi and Gold have given this in terms of the red shift

Nim) = const.[gwm,%%%%l]

For the observations we choose field galaxies rather
than cluster galaxies so the constant in the tm,i] relation

will be different. One finds
m_ -k =05 log z + 22.516 z<< 1

This system of equations can now be used to compute N(m)
for various q, values. The steady state model (qo = =1)
is compared with exploding models with d, = O)vzl\,l\/z)s,%"z'\?}'.
These models represent a hyperbolic universe of zero density

(qo = 0), Euclidean space (qo = Y2 ) and closed oscillating

2

universes for qo> 5 .
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At first one is most amazed by this plotl How can the
number of galaxies decrease as we look at fainter magnitudes?
The behavior is explained by the periodicity of the equations.
The opposite pole of the universe is reached when N(m) is a
maximum and as u increases further one is really turned
around and coming back. This situation is analogous to the
surface of a sphere. When r>WR the area begins to decrease
from its maximum value of 4\rR2. Hence the universe has
already been counted by the time the maximum number of
galaxies is reached.

Note that for models with %‘<qo< 1 the antipole is

not reached even though the universe is closed. Also the
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number of galaxies counted approaches an asymptotic limit
for each model studied with g 0. This implies we have
reached an observational horizon beyond which no information
travels.

The observable differences at the limit of the 200"
telescope are too small to provide any evidence in favor

of a specific model.

C. ANGULAR DIAMETERS

Consider the standard line element:

2 2 ¢ a : z & .
ds = cdt' — RM® [—\—i—;]_ r ¥ (do + swmo d'b_z)]

A source whose linear diameter is y at a metric distance

Ry & (W) will subtend an observed angle

= 9
. R, (W)

Using the definition of the red shift

Rl = Ro/l+z
we get

oS, = yhx?) (17)
° R, W)

16§
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From a previous analysis we know G (u) = Y, . It has
been shown by Mattig (A.N., 284, 109) that
C . i
Y, = T\ = - 9.2+ (@G- )( 1‘102:51
ROHOq-o Q* %)
for all qo2 0 . Substituting this into Eq. (17) and using

the definition of bolometric magnitude Eqg. (14) and the

definition of A Eg. (l6) we get:

const.(\* 2)?

o, = A for all ¢_»0
For the steady state model R G(u) =R U = ﬁ-z- so
(o]

“+ 2

60 = const. (\ 7 )

Plot the apparent magnitude of galaxy clusters against

their subtended angle.
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Note that for all qé} 0 the metric diameter decreases
to a minimum at which point it begins to increase. This
situation is analogous to the surface of a sphere. Standing
at the "North Pole" one observes that a rod of constant
length subtends a smaller angle as it is moved away from
the pole. At the equator it substends the smallest possible
angle and as it is moved toward the "South Pole" it begins
to subtend greater and greater angles.

For the steady state model, however, O, decreases asymp-
totically to the value of the const. as z-» 0@ . This suggests

that an experimental absence of a minimum would provide an
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acceptable test for the steady state theory. However, the

minimum occurs beyond the range of the 200" telescope.



